
PyCorrFit
FCS data evaluation
Software Guide

PyCorrFit

Thomas Weidemann
Max Planck Institute of Biochemistry, Martinsried, Germany

Paul Müller
Biotechnology Center of the TU Dresden, Germany

January 4, 2014

Contents

1 Introduction 3
1.1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 System prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Running PyCorrFit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Working with PyCorrFit 5
2.1 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The main window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 The menu bar 8
3.1 File menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 File / Import model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 File / Load data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.3 File / Open session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.4 File / Comment session . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.5 File / Clear session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.6 File / Save session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.7 File / Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Tools menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Tools / Data range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Tools / Overlay curves . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Tools / Batch control . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Tools / Global fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.5 Tools / Average data . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.6 Tools / Trace view . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.7 Tools / Statistics view . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.8 Tools / Page info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.9 Tools / Slider simulation . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Current Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Current Page / Import Data . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Current Page / Save data (*.csv) . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Current Page / Save correlation as image . . . . . . . . . . . . . . . . 16

1



3.3.4 Current Page / Save trace view as image . . . . . . . . . . . . . . . . 16
3.3.5 Current Page / Close page . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 4 Hacker’s corner 17

5 Theoretical background 18
5.1 Derivation of FCS model functions . . . . . . . . . . . . . . . . . . . . . . . 18

5.1.1 General Autocorrelation function for a single species . . . . . . . . . 18
5.1.2 General Autocorrelation function for multiple species . . . . . . . . . 19
5.1.3 Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.4 Extension of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Non-linear least-squares fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Weighted fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4 Implemented model functions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4.1 Confocal FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2 Confocal TIR-FCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.3 TIR-FCS with a square-shaped lateral detection volume . . . . . . . 25

Acknowledgements 28

2



1 Introduction

1.1 Preface

PyCorrFit emerged from my work in the Schwille Lab1 at the Biotechnology Center of the
TU Dresden in 2011/2012. The program source code is available at GitHub2. Please do not
hesitate to sign up and add a feature request. If you you found a bug, please let me know
via GitHub.

PyCorrFit was written to simplify the work with experimentally obtained correlation curves.
These can be processed independently (operating system, location, time). PyCorrFit sup-
ports commonly used file formats and enables users to allocate and organize their data in a
simple way.

PyCorrFit is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version
2 of the License, or (at your option) any later version3.

What PyCorrFit can do

� Load correlation curves from numerous correlators

� Process these curves (Section 3.2)

� Fit a model function (many included) to an experimental curve

� Import user defined models for fitting

� Many batch processing features

� Save/load entire PyCorrFit sessions

What PyCorrFit is not

� A multiple-τ correlator

� A software to operate hardware correlators

1.2 System prerequisites

1.2.1 Hardware

This documentation addresses the processing of correlation curves with PyCorrFit. PyCorr-
Fit was successfully used with the following setups:

1. APD: Photon Counting Device from PerkinElmer Optoelectronics, Model: SPCM-CD3017
Correlator: Flex02-01D/C from correlator.com with the shipped software flex02-1dc.exe.

2. APD: Photon Counting Device from PerkinElmer Optoelectronics
Correlator: ALV-6000

3. LSM Confocor2 or Confocor3 setups from Zeiss, Germany.

1http://www.biochem.mpg.de/en/rd/schwille/
2https://github.com/paulmueller/PyCorrFit
3http://www.gnu.org/licenses/gpl.html

3

http://www.biochem.mpg.de/en/rd/schwille/
https://github.com/paulmueller/PyCorrFit
http://www.gnu.org/licenses/gpl.html


1.2.2 Software

The latest version of PyCorrFit can be obtained from the internet at http://pycorrfit.

craban.de.

� MacOSx. Binary files for MacOSx >10.6.8 are available from the download page but
have not yet been fully tested for stability.

� Windows. For Windows XP or Windows 7, stand-alone binary executables are avail-
able from the download page.

� Linux. There are executable binaries for widely used distributions (e.g. Ubuntu).

� Sources The program was written in Python, keeping the concept of cross-platform
programming in mind. To run PyCorrFit on any other operating system, the installa-
tion of Python v.2.7 is required. To obtain the latest source, visit PyCorrFit at GitHub
(https://github.com/paulmueller/PyCorrFit). PyCorrFit depends on the follow-
ing python modules:

python-matplotlib (≥ 1.0.1)

python-numpy (≥ 1.5.1)

python-scipy (≥ 0.8.0)

python-sympy (≥ 0.7.2)

python-yaml

python-wxtools

python-wxgtk2.8-dbg

For older versions of Ubuntu, some of the above package versions are not listed in
the package repository. To enable the use of PyCorrFit on those systems, the follow-
ing tasks have to be performed:

matplotlib. The tukss-ppa includes version 1.0.1. After adding the repository
(apt-add-repository ppa:tukss/ppa), matplotlib can be installed as usual.

numpy. The package from a later version of Ubuntu can be installed: https:

//launchpad.net/ubuntu/+source/python-numpy/

scipy. The package from a later version of Ubuntu can be installed: https:

//launchpad.net/ubuntu/+source/python-scipy/

sympy. To enable importing external model functions, sympy is required. It is
available from http://code.google.com/p/sympy/downloads/list. Unpack-
ing the archive and executing python setup.py install within the unpacked
directory will install sympy.

Alternatively python-pip (http://pypi.python.org/pypi/pip) can be used to install up-
to-date python modules.
LATEX. PyCorrFit can save correlation curves as images using matplotlib. It is also possible
to utilize Latex to generate these plots. On Windows, installing MiKTeX with “automatic
package download” will enable this feature. On MacOSx, the MacTeX distribution can be
used. On other systems, the packages LaTeX, dvipng, Ghostscript and the scientific latex
packages texlive-science and texlive-math-extra need to be installed.

4

http://pycorrfit.craban.de
http://pycorrfit.craban.de
https://github.com/paulmueller/PyCorrFit
https://launchpad.net/ubuntu/+source/python-numpy/
https://launchpad.net/ubuntu/+source/python-numpy/
https://launchpad.net/ubuntu/+source/python-scipy/
https://launchpad.net/ubuntu/+source/python-scipy/
http://code.google.com/p/sympy/downloads/list
http://pypi.python.org/pypi/pip


1.3 Running PyCorrFit

Windows Download the executable file and double-click on the PyCorrFit.exe icon.

Linux/Ubuntu Make sure the binary has the executable bit set, then simply double-click
on the binary PyCorrFit.

Mac OSx When downloading the archive PyCorrFit.zip, the binary should be extracted
automatically (if not, extract the archive) and you can double-click it to run PyCorrFit.

from source Invoke python PyCorrFit.py from the command line.

2 Working with PyCorrFit

2.1 Workflow

The following chapter introduces the general idea of how to start and accomplish a fitting
project. FCS experiments produce different sets of experimental correlation functions which
must be interpreted with appropriate physical models. Each correlation function refers to a
single contiguous signal trace or “run”. In PyCorrFit, the user must assign a mathematical
model function to each correlation function during the loading procedure. The assignment
is irreversible in the sense that within an existing PyCorrFit session it cannot be changed.
This feature assures the stability of the batch processing routine for automated fitting of
large data sets. Nevertheless, the fit of different models to the same data can be explored
by loading the data twice or simply by creating two different sessions.

Let’s briefly discuss a typical example: To determine the diffusion coefficient of a fluo-
rescently labeled protein in free solution, one has to deal with two sets of autocorrelation
data: measurements of a diffusion standard (e.g. free dye for which a diffusion coefficient has
been published) to calibrate the detection volume and measurements of the protein sample.
The protein sample may contain small amounts of slowly diffusing aggregates. While the
calibration measurements can be fitted with a one-component diffusion model (T-3D), the
protein sample displays two mobility states, monomers and aggregates, which are taken into
account by a two-component diffusion model (T-3D-3D). With PyCorrFit such a situation
can be treated in three ways, having different pros and cons:

1. Create separate sessions for each type of sample and assign different model functions.

2. Assign a one-component model to the dye measurements and a two-component model
to the protein measurements when loading consecutively into the same session.

3. Assign a two-component model for all data and, when appropriate, manually inactivate
one component by fixing its contribution to 0%.

The first approach is straightforward, however, it requires homogeneous diffusion behav-
ior for each data set. The second strategy has the advantage that the dye and the protein
curves, as well as the obtained parameters can be visually compared during the fitting analy-
sis within the same session. In this case, batch fitting is still possible because it discriminates
data sets assigned to different models. In the third case, simultaneous batch fitting is also
possible. However, for each dye measurement one has to eliminate the second, slow diffusion
species manually, which might be laborious. Inactivating components by fixing parameters

5



is nevertheless a common way to evaluate heterogeneous data sets, for example, a protein
sample for which only a subgroup of curves requires a second diffusion component due to
occasional appearance of aggregates. Such situations are frequently encountered in intra-
cellular measurements. In conclusion, all three strategies or combinations thereof may be
suitable. In any case, the user must decide on model functions beforehand, therefore it is
advisable to group the data accordingly.

The fitting itself is usually explored with a representative data set. Here, the user has
to decide on starting parameters, the range in which they should be varied, corrections like
background, and other fitting options. Once the fit looks good, the chosen settings can be
transferred at once to all other pages assigned to the same model using the Batch control
tool (Section 3.2.3). After flipping through the data for visual inspection one may check the
parameters across all pages in the Statistics view tool and re-visit outliers (Section 3.2.7).
From there, the numerical fit values and example correlation functions can be exported.

2.2 The main window

Together with a system’s terminal of the platform on which PyCorrFit was installed (Win-
dows, Linux, MacOS), the main window opens when starting the program as described in
section 1.3. The window title bar contains the version of PyCorrFit and, if a session was
re-opened or saved, the name of the fitting session. A menu bar provides access to many
supporting tools and additional information as thoroughly described in Chapter 3.

There are three gateways for experimental data into a pre-existing or a new PyCorrFit
session (File / Load data, File / Open session, and Current page / Import data). When
a session has been opened or correlation data have been loaded, each correlation curve is
displayed on a separate page of a notebook. For quick identification of the active data set,
a tab specifies the page number, the correlated channels (AC/CC), and the run number in
case there are multiple runs in one experimental data file. When clicking a little triangle to
the far-right, one can use a drop-down list of all page titles to directly access a particular
data set. Alternatively, the pages can be toggled by tapping the curser keys (left/right).
There can be only one activated page for which the tab appears highlighted.

The page containing a correlation function is divided in two halves. At the left hand side
the page shows a pile of boxes containing values or fitting options associated to the current
model and data set:

� Data set, a unique identifier for each correlation curve which is automatically assembled
from different fields during the loading procedure (Section 3.1.2). This window can
also be manually edited, thereby allowing to re-name or flag certain data during the
fitting analysis.

� Model parameters displays the values which determine the current shape of the assigned
model function. Initially, starting values are loaded as they were defined in the model
description (Section 3.1.1). Little buttons allow a stepwise increase or decrease in
units of 1/10th. It is also possible to directly enter some numbers. A checkbox is used
to set the parameter status to “varied” (checked) or “fixed” (unchecked) during the
fitting. At the end, when saving the session, the current set of values together with
their indicated names are stored in the *.yaml file (Section 3.1.6).

� Amplitude corrections applies additional rescaling to amplitude related parameters
like the number of particles n or fractions thereof associated with different correlation
times (n1, n2, etc.). Experimental values of non-correlated background intensity can

6



Figure 1, user interface of PyCorrFit: A circular scanning FCS (CS-FCS) curve of DiO on a
supported lipid bilayer (glass substrate) is shown. The measurement yields a diffusion coefficient
of 0.28µm2s−1 (F1 = 1, so only one component is fitted). Note that a 2D diffusion model is used
and not a 3D model (as shown in figure 2).

be manually entered for each channel. In addition, the correlation curves can be
normalized, to facilitate a visual comparison of their time dependence.

� Fitting options offers weighted fitting. The underlying idea is that data points with
higher accuracy should also have a higher impact on model parameters. To derive
weights, PyCorrFit calculates the variance of the difference between the actual data
and a smooth, empiric representation of the curve for a certain neighborhood. The
number of neighboring data points at each side (j > 0) can be set. For such a smooth
representation a 5-knot spline function or the model function with the current param-
eter set can be used. The latter should improve when repeatedly fitting.

At the right hand side are two graphics windows. The dimensionless correlation functions
G(τ) are plotted against the lag time (τ) in logarithmic scale. Below, a second window shows
the residuals, the actual numerical difference between the correlation data and the model
function. Fitting with appropriate models will scatter the residuals symmetrically around
zero (x-axis). When weighted fitting was performed, the weighted residuals are shown. A
good fit will not leave residuals systematically above or below the x-axis at any time scale.

The main window can be rescaled as a whole to improve data representation. In addition,
to zoom in, one can drag a rectangle within the plot area; a double click then restores the
initial scale. Experimental data points are linked by grey lines, the state of the model function
is shown in blue. When a weighted fit was applied, the variance of the fit is calculated for
each data point and displayed in cyan.

7



3 The menu bar

PyCorrFit is organized in panels which group certain functions. The menu organizes data
management (File), data analysis (Tools), display of correlation functions (Current Page),
numerical examples (Model), software settings (Preferences), and software metadata (Help).

3.1 File menu

The File menu organizes the import of theoretical models, experimental correlation data, and
opening and saving of entire PyCorrFit fitting sessions. However, the numerical fit results
are exported from the Statistics view panel which can be found under Tools (Section 3.2.7).

3.1.1 File / Import model

Correlation data must be fitted to models describing the underlying physical processes which
give rise to a particular time dependence and magnitude of the recorded signal fluctuations.
Models are mathematical expressions containing parameters with physical meaning, like the
molecular brightness or the dwell time through an illuminated volume etc. While a number
of standard functions are built-in, the user can define new expressions. Some examples
can be found at GitHub in the PyCorrFit repository, e.g. circular scanning FCS [9] or a
combination of diffusion and directed flow [2].

Model functions are imported as text files (*.txt) using certain syntax:

� Encoding: PyCorrFit can interpret the standard Unicode character set (UTF-8).

� Comments: Lines starting with a hash (#), empty lines, or lines containing only white
space characters are ignored. The only exception is the first line starting with a hash
followed by a white space and a short name of the model. This line is evaluated to
complement the list of models in the dialogue Choose model, when loading the data.

� Units: PyCorrFit works with internal units for:

– Time: 1 ms

– Distance: 100 nm

– Diffusion coefficient: 10µm2s−1

– Inverse time: 1000 s−1

– Inverse area: 100µm−2

– Inverse volume: 1000µm−3

� Parameters: To define a new model function new parameters can be introduced.
Parameters are defined by a sequence of strings separated by white spaces containing
name, the dimension in angular brackets, the equal sign, and a starting value which
appears in the main window for fitting. For example: D [10µm2s−1] = 5.0. The
parameter names contain only alphabetic (not numerical) characters. G and g, as well
as the numbers e and pi are already mapped and cannot be used freely.

� Placeholder: When defining composite mathematical expressions for correlation func-
tions one can use placeholders. Placeholders start with a lowercase ‘g’. For example,
the standard, Gaussian 3D diffusion in free solution may be written as

– gTrp = 1+ T/(1-T)*exp(-tau/tautrip)

8



– gTwoD = 1/(1+tau/taudiff)

– gThrD = 1/sqrt(1+tau/(taudiff*S**2))

The individual parts are then combined in the last line of the *.txt file, where the correlation
function is defined starting with uppercase ’G’:

G = 1/n * gTrp * gTwoD * gThrD

For reference of mathematical operators check for example www.tutorialspoint.com / python
/ python basic operators.htm. To illustrate a more complex example see the model function
for circular scanning FCS in figure 2.

3.1.2 File / Load data

Load data is the first way to import multiple correlation data sets into a PyCorrFit session.
The supported file formats can be found in a drop-down list of supported file endings in the
pop-up dialog Open data files :

(1) All supported files default

(2) Confocor3 (*.fcs) AIM 4.2, ZEN 2010, Zeiss, Germany

(3) Correlator ALV6000 (*.ASC) ALV Laser GmbH, Langen, Germany

(4) Correlator.com (*.SIN) www.correlator.com, USA

(5) Matlab ‘Ries (*.mat) EMBL Heidelberg, Germany

(6) PyCorrFit (*.csv) Paul Müller, TU Dresden, Germany

(7) Zip files (*.zip) Paul Müller, TU Dresden, Germany

While (2)-(4) are file formats associated with commercial hardware, (5) refers to a MATLAB
based FCS evaluation software developed by Jonas Ries in the Schwille lab at TU Dresden,
(6) is the txt-file containing comma-separated values (csv) generated with PyCorrFit via the
command Current Page / Save data. Zip-files are automatically decompressed and can be
imported when matching one of the above mentioned formats. In particular loading of zip
files is a possibility to re-import correlation data from entire PyCorrFit sessions. However,
these data are treated as raw, which means that all fitting parameters and model assignments
are lost.

When loading data, the user is prompted to assign fit models in the Choose Models dialogue
window. There, curves are sorted according to channel (for example AC1, AC2, CC12, and
CC21, as a typical outcome of a dual-color cross-correlation experiment). For each channel
a fit model must be selected from the list (see Section 3.4):

If a file format is not yet listed, the correlation data could be converted into a compatible
text-file (*.csv) or bundles of *.csv files within a compressed archive *.zip. For reformatting
the following points should be considered:

� Encoding: PyCorrFit uses the standard Unicode character set (UTF-8). However,
since no special characters are needed to save experimental data, other encodings may
also work. New line characters are \r\n (Windows).

� Comments: Lines starting with a hash (#), empty lines, or lines containing only white
space characters are ignored. Exceptions are the keywords listed below.

� Units: PyCorrFit works with units/values for:

9

http://www.tutorialspoint.com/python/python_basic_operators.htm
http://www.tutorialspoint.com/python/python_basic_operators.htm


# CS-FCS 3D+S+T (Confocal)

# Circular Scanning FCS model function. 3D diffusion + Triplet.

## Definition of parameters:

# First, the parameters and their starting values for the model function

# need to be defined. If the parameter has a unit of measurement, then it

# may be added separated by a white space before the "=" sign. The starting

# value should be a floating point number. Floating point abbreviations

# like "1e-3" instead of "0.001" may be used.

# Diffusion coefficient

D [10 µm2/s] = 200.0

# Structural parameter

w = 5.0

# Waist of the lateral detection area

a [100 nm] = 1.0

# Particle number

n = 5.0

# Scan radius

R [100 nm] = 5.0

# Frequency

f [kHz] = 20.0

# Triplet fraction

T = 0.1

# Triplet time

tautrip [ms] = 0.001

# The user may wish to substitute certain parts of the correlation function

# with other values to keep the formula simple. This can be done by using the

# prefix "g". All common mathematical functions, such as "sqrt()" or "exp()"

# may be used. For convenience, "pi" and "e" are available as well.

gTrip = 1. + T/(1-T)*exp(-tau/tautrip)

gScan = exp(-(R*sin(pi*f*tau))**2/(a**2+D*tau))

gTwoD = 1./(1.+D*tau/a**2)

gOneD = 1./sqrt(1.+D*tau/(w*a)**2)

gThrD = gTwoD * gOneD

# The final line with the correlation function should start with a "G"

# before the "=" sign.

G = 1./n * gThrD * gScan * gTrip

Figure 2, user defined model function for PyCorrFit: The working example shows a model
function for circular scanning FCS.

10



– Time: 1 ms

– Intensity: 1 kHz

– Amplitude offset: G(0) = 0 (not 1)

� Keywords:4 PyCorrFit reads the first two columns containing numerical values. The
first table (non-hashed) is recognized as the correlation data containing the lag times in
the first and the correlation data in the second column. (In case the *.csv file has been
generated with PyCorrFit up to three additional columns containing the fit function
are ignored). The table ends, when the keyword # BEGIN TRACE appears. Below this
line the time and the signal values should be contained in the first two columns. If
cross-correlation data have to be imported a second trace can be entered after the
keyword # BEGIN SECOND TRACE.

� Tags:5 Channel information can be entered using defined syntax in a header. The
keyword

# Type AC/CC Autocorrelation

assigns the tag AC and the keyword

# Type AC/CC Crosscorrelation

assigns the tag CC to the correlation curve. These strings are consistently displayed in
the user interface of the respective data page in PyCorrFit. If no data type is specified,
autocorrelation is assumed. Tags may be specified with additional information like
channel numbers, e.g.

# Type AC/CC Autocorrelation 01.

In this case the tag AC 01 is generated. This feature is useful to keep track of the type
of curve during the fitting and when post-processing the numerical fit results.

3.1.3 File / Open session

This command is the second way to import data into PyCorrFit. In contrast to Load data,
it opens an entire fitting project, which was previously saved with PyCorrFit. Sessions
are bundles of files named *.fcsfit-session.zip. Sessions contain, comments, model assigned
correlation data, and the current state of parameters for each data page (Section 3.1.6).

3.1.4 File / Comment session

This command opens a window to place text messages that can be used to annotate a fitting
session.

3.1.5 File / Clear session

This command closes all pages while the PyCorrFit.exe keeps running. The user is prompted
to save the session under the same or a different name. At this stage both options No or
Cancel lead to clearance and a potential loss of recent modifications.

4Keywords are case-insensitive.
5Tags are case-insensitive.

11



3.1.6 File / Save session

In addition to display and fit individual curves, a strong feature of PyCorrFit is to save
an entire fitting project as a single session. Sessions allow the user to revisit and explore
different models, fitting strategies, and data sets. Importantly the work can be saved at any
stage.

The number of files bundled in a session varies depending on the number of data sets
(pages), the number of used models, and what was done during the fitting. A detailed
description can be found in the Readme.txt file attached to each session. For example, the
numerical correlation and intensity data are saved separately as *.csv text files. However, in
contrast to the Save data (*.csv) command of the Current Page menu, there are no metadata
in the header, just tables containing the numerical values. In sessions, the fitting parameters
are stored separately in the human-readable data serialization format, *.yaml.

3.1.7 File / Exit

This command closes down PyCorrFit. The user is prompted to save the session under the
same or a different name. At this stage No leads to the loss of recent changes, while Cancel
keeps PyCorrFit running.

3.2 Tools menu

The Tools menu provides access to a series of accessory panels which extent the capability
of the main window. These accessory panels can stay open during the entire analysis. Open
panels appear checked in the menu. Most operations can be executed across the entire data
set with a single mouse click.

3.2.1 Tools / Data range

This panel limits the range of lag times which are displayed in the main window panel.
At the same time it defines the range of points which are used for fitting. For example,
this feature can be applied to remove dominant after-pulsing of the avalanche photo diodes
(APDs) which may interfere with Triplet blinking at short lag times. The user has the
options to Apply the channel settings only to the current page or he can Apply to all pages.
In contrast to Batch control, this operation ignores whether the data are assigned to different
models.

Power user, who frequently load and remove data sets, may take advantage of a checkbox
to fix the channel selection for all newly loaded data sets.

3.2.2 Tools / Overlay curves

This window displays the correlation data (not the fit curves) of all pages in a single plot.
The curves can be discriminated by color. If only one curve is selected it appears in red.
Curves with ambiguous shape can easily be identified, selected, and removed by clicking
Apply. A warning dialogue lists the pages which will be kept.

Data representation is synchronized with the page display in the Main window. For exam-
ple, narrowing the range of lag times by Data range is immediately updated in the Overlay
curves tool. Likewise, their normalization of the amplitudes to unity.

The other way round, some tools directly respond to the selections made in the Overlay
curves tool: Global fitting, Average curves, and Statistics view allow to perform operations on
an arbitrary selection of pages which can be specified by page number. Instead of manually

12



typing their numbers, the curves may be selected within the Overlay curves tool. The
respective input fields are immediately updated.

The tool is closed by the button Cancel. All the listed data sets will be kept. However,
the selections transferred to the Global fitting, Average curves, and Statistics view tools are
kept as well.

3.2.3 Tools / Batch control

By default the current page is taken as a reference to perform automated fitting. A batch is
defined as the ensemble of correlation data sets (pages) assigned to the same model function
within a session. A session can therefore have several batches, even for the same data.

For fitting it is crucial to carefully define the starting parameters, whether parameters
should be fixed or varied, the range of values which make physically sense, and other options
offered within the Main window. By executing Apply to applicable pages, these settings are
transferred to all other pages assigned to the same fit model. Note that this includes the
range of lag times (lag time channels) which may have been changed with the Data range
tool for individual pages.

The button Fit applicable pages then performs several cycles of fitting [how many cycles?]
on all pages of the same batch. Alternatively, the user can define an external source of
parameters as a reference, i.e. the first page of some Other session (*.fcsfit-session.zip).
However, this assumes a consistent assignment of model functions.

3.2.4 Tools / Global fitting

Global fitting is useful when experimental curves share the same values for certain physical
parameters. For example, due to physical constraints in two-focus FCS both autocorrelation
curves and the cross-correlation curves should adopt the same values for the diffusion time
taudiff and the number of particles n. A global fit can be applied such that n and taudiff
are identical for all data sets. All curves are added to a single array. In contrast to fixing
the shared parameters across a batch, in Global fitting Chi-square is minimized for all data
sets simultaneously [please check!]. To perform Global fitting, a subset of curves has to be
selected by typing the numbers into the input field or by highlighting the pages via the
Overlay tool.

3.2.5 Tools / Average data

Often in FCS, the measurement time at a particular spot is divided in several runs. This
approach is taken when occasional, global intensity changes are superimposed on the molec-
ular fluctuations of interest. Then the user has to sort out the bad runs. After fitting, one
may want to re-combine the data, to export a cleaned, average correlation function. This
can be done with the tool Average data, for which a subset of curves has to be selected by
typing the numbers into the input field or by highlighting the pages via the Overlay curves
tool.

For averaging, there are constraints:

1. Since the correlation curves are averaged point by point this requires the same number
of lag time channels. Runs of different length cannot be averaged.

2. The tool can only average data sets which are exclusively autocorrelation or cross-
correlation.

13



3. The user can check a box to enforce the program to ask for data sets with the same
model as the current page. This may help to avoid mistakes when selecting pages.

The averaged curve is shown on a separate page. The new Filename/title receives the entry
Average [numbers of pages]. The assigned model is by default the same as for the individual
pages. However, while averaging, the user can choose a different model from a drop-down
list.

3.2.6 Tools / Trace view

FCS theory makes assumptions about the thermodynamic state of the system. Signal fluc-
tuations can only be analyzed when the system is at equilibrium or at a sufficiently stable
steady state. Global instabilities on the time scale of the measurement itself, e.g. photo-
bleaching, have dramatic effect on the shape of the measured correlation curve. Therefore it
is common practice to check the correlated intensity trace for each curve. Trace view simply
displays the signal trace for each correlation function. The window stays open during the
session and can be used to revisit and flag ambiguous data sets.

3.2.7 Tools / Statistics view

The goal of a correlation analysis is to determine experimental parameter values with suffi-
cient statistical significance. However, especially for large data sets, it can get quite laborious
to check all of the individual values on each page. We designed the Statistics view panel to
review the state of parameters across the experimental batch (pages assigned to the same
model) in a single plot, thereby facilitating to the identification of outliers.

The current page is taken as a reference for the type of model parameters which can be
displayed. The user can choose different Plot parameters from a drop-down list. A subset of
pages within the batch can be explicitly defined by typing the page numbers into the input
field or by highlighting in the Overlay curves tool. Note that page numbers which refer to
different models than the current page are ignored.

The Statistics view panel contains a separate Export box, where parameters can be selected
(checked) and saved as a comma separated text file (*.csv). Only selected page numbers are
included.

3.2.8 Tools / Page info

Page info is a most verbose summary of a data set. The panel Page info is synchronized
with the current page. The following fields are listed:

1. Version of PyCorrFit

2. Field values from the main window (filename/title, model specifications, page number,
type of correlation, normalizations)

3. Actual parameter values (as contained in the model function)

4. Supplementary parameters (intensity, counts per particle, duration, etc.)

5. Fitting related information (Chi-square, channel selection, varied fit parameters) .

6. Model doc string (Section 3.4)

The content of Page info is saved as a header when exporting correlation functions via the
command Current page / Save data (*.csv) (Section 3.3.2).

14



3.2.9 Tools / Slider simulation

This tool visualizes the impact of model parameters on the shape of the model function of
a current page. Such insight may be useful to choose proper starting values for fitting or to
develop new model functions. For example, in the case two of the parameters trade during
the fitting one may explore to which extent a change in both values produces similar trends.

Two variables (A and B) have to be assigned from a drop-down list of parameters as-
sociated with the current model function. For each of these, the Slider simulation panel
shows initially the starting value (x) as a middle position of a certain range (from 0.1*x
to 1.9*x). The accessible range can be manually edited and the actual value of the slider
position is displayed at the right hand side of the panel. Dragging the slider to lower (left)
or higher (right) values changes the entry in the box Model parameters of the Main window
and accordingly the shape opt the model function in the plot. By default the checkbox
Vary A and B is active meaning that both variables during Slider simulation can be varied
independently.

In addition, the variables A and B can be linked by a mathematical relation. For this a
mathematical operator can be selected from a small list and the option Fix relation must
be checked. Then, the variable B appears inactivated (greyed out) and the new variable
combining values for A and B can be explored by dragging.

3.3 Current Page

This menu compiles import and export operations referring exclusively to the active page in
the main window.

3.3.1 Current Page / Import Data

This command is the third way to import data into a pre-existing session. Single files con-
taining correlation data can be imported as long as they have the right format (Section 3.1.2).
In contrast to Load data from the File menu, the model assignment and the state of the
parameters remains. The purpose of this command is to compare different data sets to the
very same model function for a given parameter values. After successful import, the previous
correlation data of this page are lost.

To avoid this loss, one could first generate a new page via the menu (Section ??), select
a model function and import data there. This is also a possibility to assign the very same
data to different models within the same session.

3.3.2 Current Page / Save data (*.csv)

For the documentation with graphics software of choice, correlation curves can be exported
as a comma-separated table. A saved PyCorrFit text-file (*.csv) will contain a hashed
header with metadata from the Page info tool (Section 3.2.8), followed by the correlation
and fitting values in tab-separated columns: Channel (tau [s]), Experimental correlation,
Fitted correlation, Residuals, and Weights (fit).

Below the columns, there are again 5 rows of hashed comments followed by the intensity
data in two columns: Time [s] and Intensity trace [kHz]. Note that there are no assem-
blies of “multiple runs”, since PyCorrFit treats these as individual correlation functions. A
*.csv file therefore contains only a single fitted correlation curve and one intensity trace for
autocorrelation or two intensity traces for cross-correlation.

15



3.3.3 Current Page / Save correlation as image

For a quick documentation, the correlation curve can be exported as a compressed bitmap
(*.png). The plot contains a legend and the actual values and errors of the varied parameters,
however, not the fixed parameters. Note that the variable tau cannot be displayed using
Unicode with Windows.

3.3.4 Current Page / Save trace view as image

For a quick documentation the intensity from the Trace view panel can be exported as a
compressed bitmap (*.png).

3.3.5 Current Page / Close page

Closes the page; the data set is removed from the session. The page numbers of all other
pages remain the same. The command is equivalent with the closer (x) in the tab.

3.4 Models

When choosing a model from the Models menu a new page opens and the model function
is plotted according to the set of starting values for parameters as they were defined in the
model description. The lists contains all of the implemented model functions, which can be
selected during File / Load data. The parameters can be manipulated to explore different
shapes; the tool Slider simulation can also be used. Via Current page / Import data, the
model may then be fitted to an experimental data set. Standard model functions for a
confocal setup are:

- Confocal (Gaussian): T+3D Triplet blinking and 3D diffusion

- Confocal (Gaussian): T+3D+3D Triplet with two diffusive components

- Confocal (Gaussian): T-2D Triplet blinking and 2D diffusion

- Confocal (Gaussian): T-2D-2D Triplet with two diffusive components

- Confocal (Gaussian): T-3D-2D Triplet with mixed 3D and 2D diffusion

There is also a collection of models for FCS setups with TIR excitation:

- TIR (Gaussian/Exp.): 3D 3D diffusion

- TIR (Gaussian/Exp.): T+3D+3D Triplet with two diffusive components

- TIR (Gaussian/Exp.): T+3D+2D Triplet with mixed 3D and 2D diffusion

In addition, there are may be user defined model functions which have been uploaded
previously via File / Import model (Section 3.1.1).

3.5 Preferences

Latex If the user has a Tex distribution (e.g. MikTex for Windows) installed, checking the
“Latex” option will open a separate, TeX formatted panel (Figure1 ) via the Current page /
Save [. . . ] as image commands. The Figure1 contains some interactive options for display.
From there, in a second step, the image can be exported as *.png or *.svg.

16



Verbose If checked, this will cause the PyCorrFit to display graphs that would be hidden
otherwise. In weighted fitting with a spline, the spline function used for calculating the
weights for each data points is displayed6. When saving the correlation curve as an image
(Section 3.3.3), the plot will be displayed instead of saved. If “Latex” is active these plots
will also be TeX-formatted. The advantage in displaying plots is the ability to zoom or
rescale the plot from within PyCorrFit.

Show weights Checking the option Show weights will produce two lines showing the
weights for each data point of the correlation function in the plot, as well as in the ex-
ported image. Note that the weights are always exported when using the Save data (*.csv)
command from the Current page menu.

3.6 Help

Documentation This entry displays this documentation using the systems default PDF
viewer.

Wiki This entry displays the wiki of PyCorrFit on GitHub. Everyone who registers with
GitHub will be able to make additions and modifications. The wiki is intended for end-users
of PyCorrFit to share protocols or to add other useful information.

Update establishes a link to the GitHub website to check for a new release; it also provides
a few web links associated with PyCorrFit

Shell This gives Shell-access to the functions of PyCorrFit. It is particularly useful for
trouble-shooting.

Software This lists the exact version of Python and the corresponding modules with which
PyCorrFit is currently running.

About Information of the participating developers, the license, and documentation writers.

4 4 Hacker’s corner

New internal model functions Additionally, new file formats can be implemented by
programming of the readfiles module of PyCorrFit. First, edit the code for init .py and
then add the script read FileFormat.py.

External models will be imported with internal model function IDs starting at 7000.
Models are checked upon import by the Python module sympy. If the import fails it might
be a syntax error or just an error of sympy, since this module is still under development.

6For obvious reasons, such a plot is not generated when using the iteratively improved Model function or
the actual Average correlation curve for weighted fitting.

17



5 Theoretical background

5.1 Derivation of FCS model functions

This section introduces the calculation of FCS model functions. It supplies some background
information and points out general properties of correlation functions.

5.1.1 General Autocorrelation function for a single species

FCS model functions describe how the signal F (t), emitted from a certain observation vol-
ume, is temporally dependent on its own past (autocorrelation) or on some other signal
(cross-correlation). The autocorrelation G(τ) of a signal F (t) is computed as follows:

G(τ) =
〈δF (t)δF (t+ τ)〉

〈F (t)〉2
=

g(τ)

〈F (t)〉2
. (1)

G(τ) normalized autocorrelation curve

τ lag time

〈F 〉 the expectation value of F (t). Applying the ergodic theorem, this can be rewritten as the
time average

〈F (t)〉 = lim
T→inf

1

T

∫ T

0
F (t)dt.

δF (t) = F (t)− 〈F (t)〉 fluctuation of the fluorescence signal

g(τ) non normalized autocorrelation curve

The fluorescence signal is dependent on the size and shape of the detection volume (e.g.
Gaussian shaped for confocal setups or exponential decaying for TIRF setups), on the prop-
agator of the diffusing dye (free diffusion, diffusion with flow, etc.), and the brightness and
concentration of the dye under observation [3].

18



G(τ) =
q2C

∫
d3r
∫

d3r′Ω(r)Φ(r, r′, τ)Ω(r′)

〈F (t)〉2
(2)

q molecular brightness, dependent on excitation intensity, quantum yield, i.e. emission proper-
ties and absorption cross sections of the dye, and the detection efficiency of the instrument.

Ω 3D molecule detection function, dependent on the shape of the pinholes used for detection
and the excitation laser profile, i.e. the point spread function (PSF).

Φ diffusion propagator. The distribution of dyes in a liquid follows Fick’s laws of diffusion. For
free diffusion, this is a simple Gaussian distribution.

F fluorescence signal of the sample. It is defined as

F (t) = q

∫
d3rΩ(r)c(r, t)

with c(r, t) being dye distribution (particle concentration) inside the detection volume.

C average concentration of the dye following the dynamics of the propagator Φ. Us-
ing the ergodic hypothesis and assuming a normalized molecule detection function
(Veff =

∫
d3rΩ(r) = 1), the concentration computes to C = 〈F (t)〉/q.

5.1.2 General Autocorrelation function for multiple species

Most experiments include particles with more than one dynamic property. Labeled particles
may have different size or the temporal dynamics may include a triplet term. For n different
species inside the detection volume, the autocorrelation function becomes:

G(τ) =
g(τ)

〈F (t)〉2
=

∑n
i=1

∑n
j=1 gij(τ)

〈F (t)〉2
(3)

gij(τ) = qiqj

∫
d3r

∫
d3r′Ω(r)Φij(r, r

′, τ)Ω(r′) (4)

g(τ) non normalized correlation function

gij(τ) non normalized cross correlation between two species i and j. For n species, i, j ∈ [1, ..., n].

qi molecular brightness of species i

Ω 3D molecule detection function

Φij diffusion propagator computed from species i with species j. If species i and j are indepen-
dently diffusing, then Φij is zero. CijΦij(r, r

′, τ) = 〈δci(r, 0)δcj(r
′, τ)〉

Cij average concentration of objects following the dynamics of Φij . If i = j, Cii = Ci is the
concentration of the dye i.

If the propagators Φij(x, y, z;x′, y′, z′; τ) and the molecule detection function Ω(x, y, z) fac-
torize into an axial (z) and a lateral (x, y) part, so will gij(τ):

gij(τ) = qiqj · gij,z(τ) · gij,xy(τ) (5)

19



Following the example with a freely diffusing species A and a laterally diffusing species B
inside a membrane at z = z0, it can be concluded:

gAA(τ) = q2
A · gAA,z(τ) · gAA,xy(τ)

gBB(τ) = q2
B · gBB,z0(τ) · gBB,xy(τ)

gAB(τ) = gBA(τ) = qAqB · gAB,z(τ) · gAB,xy(τ)

g(τ) = gAA(τ) + 2gAB(τ) + gBB(τ)

To obtain the normalized autocorrelation function, the average 〈F (t)〉 has to be calculated:

F (t) =
n∑
i=1

Fi(t)

FA(t) = qA

∫
d3rΩ(r)CA(r, t)

FB(t) = qB

∫
dx

∫
dyΩ(x, y, z = z0)CB(x, y, t)

〈F (t)〉 = 〈FA(t)〉+ 〈FB(t)〉

It is noticeable, that CB is a 2D concentration, whereas CA is a 3D concentration. Since
there is no correlation between the two freely diffusing species A and B, gAB(τ) is zero. The
normalized autocorrelation curve may now be calculated like this:

G(τ) =
g(τ)

〈F (t)〉2

G(τ) =
gAA(τ) + gBB(τ)

(〈FA(t)〉+ 〈FB(t)〉)2

5.1.3 Cross-correlation

Cross-correlation is a generalization of autocorrelation. Cross-correlation functions are de-
rived in the same manner as autocorrelation functions. Here, signals recorded in two detec-
tion channels are cross-correlated to obtain the correlation function.

GXY (τ) =
〈δFX(t)δFY (t+ τ)〉
〈FX(t)〉〈FY (t)〉

(6)

A cross-correlation analysis of two species labeled by two types of dyes observed in two
corresponding detection channels can be used for binding assays. Only complexes giving
simultaneous signal in both channels contribute to the cross-correlation amplitude. Thus a
finite cross-correlation indicates co-diffusion.

5.1.4 Extension of the theory

By modifying the propagator Φ and the detection volume Ω, other effects, like triplet blinking
or binding reactions can be quantified. In many cases, analytical solutions to the above
integrals are not straightforward and approximations have to be made. For example, the
Gaussian shaped detection profile in confocal FCS is already an approximation. However,
deviations from the true results are considered to be small [18]. Section 5.4 introduces several
model functions with various detection symmetries and particle dynamics.

20



5.2 Non-linear least-squares fit

PyCorrFit uses the non-linear least-squares fitting capabilities from scipy.optimize. This
package utilizes the Levenberg–Marquardt algorithm to minimize the sum of the squares.
More information on this topic can be obtained from the online documentation of leastsq7.
One can define a distance d(G,H) between two discrete functions G and H with the discrete
domain of definition τ1 . . . τn as the sum of squares:

d(G,H) =
n∑
i=1

[G(τi)−H(τi)]
2 (7)

The least-squares method minimizes this distance between the model function G and the
experimental values H by modifying k additional fitting parameters α1, . . . , αk:

χ2 = min
α1,...,αk

n∑
i=1

[G(τi, α1, . . . , αk)−H(τi)]
2 (8)

The minimum distance χ2 is used to characterize the success of a fit. Note, that if the number
of fitting parameters k becomes too large, multiple values for χ2 can be found, depending
on the starting values of the k parameters.

5.3 Weighted fitting

In certain cases, it is useful to implement weights (standard deviation) σi for the calculation
of χ2. For example, very noisy parts of a correlation curve can falsify the resulting fit. In
PyCorrFit, weighting is implemented as follows:

χ2
weighted = min

α1,...,αk

n∑
i=1

[G(τi, α1, . . . , αk)−H(τi)]
2

σ2
i

(9)

PyCorrFit is able to calculate the weights σi from the experimental data. The different
approaches of this calculation of weights implemented in PyCorrFit are explained in sec-
tion 2.1.

5.4 Implemented model functions

This is an overview of all the model functions that are currently8 implemented in PyCorrFit.
To each model a unique model ID is assigned by PyCorrFit. Most of the following information
is also accessible from within PyCorrFit using the Page info tool.

5.4.1 Confocal FCS

The confocal detection volume with the structural parameter

SP =
z0

r0

(10)

has an effective size of

V = π3/2r2
0z0 (11)

7http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html#scipy.

optimize.leastsq
8January 4, 2014

21

http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html##scipy.optimize.leastsq
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.leastsq.html##scipy.optimize.leastsq


where r0 is its lateral and z0 its axial (in case of 3D diffusion) extension. Thus, the effective
number of particles is defined as

N = CV (12)

with the concentration C given implicitly in the model functions. The diffusion coefficient
is calculated from the diffusion time τdiff using

D =
1

4τdiff

( z0

SP

)2

=
r2

0

4τdiff

. (13)

The parameters in the equation above need to be calibrated to obtain the diffusion coefficient.
Usually a reference dye with a known diffusion coefficient is used to determine the lateral
extension of the detection volume r0 with a fixed structural parameter of e.g. SP = 4.

Name Confocal (Gaussian) T+3D
ID 6011
Descr. Three-dimensional free diffusion with a Gaussian laser profile

(eliptical), including a triplet component [6, 15, 16].

G(τ) = A0 +
1

N

1

(1 + τ/τdiff)

1√
1 + τ/(SP2τdiff)

(
1 +

Te−τ/τtrip

1− T

)
(14)

A0 Offset
N Effective number of particles in confocal volume
τdiff Characteristic residence time in confocal volume
SP Structural parameter, describes elongation of the confocal volume
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet

Name Confocal (Gaussian) T+3D+3D
ID 6030
Descr. Two-component three-dimensional free diffusion with a Gaussian

laser profile, including a triplet component [1, 4, 8, 14].

G(τ) = A0 +
1

N(F + α(1− F ))2

(
1 +

Te−τ/τtrip

1− T

)
× (15)

×

[
F

(1 + τ/τ1)

1√
1 + τ/(SP2τ1)

+ α2 1− F
(1 + τ/τ2)

1√
1 + τ/(SP2τ2)

]
A0 Offset
N Effective number of particles in confocal volume (N = N1 +N2)
τ1 Diffusion time of particle species 1
τ2 Diffusion time of particle species 2
F Fraction of molecules of species 1 (N1 = FN)
α Relative molecular brightness of particles 1 and 2 (α = q2/q1)
SP Structural parameter, describes elongation of the confocal volume
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

22



Name Confocal (Gaussian) T+2D
ID 6002
Descr. Two-dimensional diffusion with a Gaussian laser profile, includ-

ing a triplet component [1, 6, 10,12,15,16].

G(τ) = A0 +
1

N

1

(1 + τ/τdiff)

(
1 +

Te−τ/τtrip

1− T

)
(16)

A0 Offset
N Effective number of particles in confocal area
τdiff Characteristic residence time in confocal area
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

Name Confocal (Gaussian) T+2D+2D
ID 6031
Descr. Two-component, two-dimensional diffusion with a Gaussian laser

profile, including a triplet component [1, 4, 8, 14].

G(τ) = A0 +
1

N(F + α(1− F ))2

[
F

1 + τ/τ1

+ α2 1− F
1 + τ/τ2

](
1 +

Te−τ/τtrip

1− T

)
(17)

A0 Offset
N Effective number of particles in confocal area (N = N1 +N2)
τ1 Diffusion time of particle species 1
τ2 Diffusion time of particle species 2
F Fraction of molecules of species 1 (N1 = FN)
α Relative molecular brightness of particles 1 and 2 (α = q2/q1)
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

Name Confocal (Gaussian) T+3D+2D
ID 6032
Descr. Two-component, two- and three-dimensional diffusion with a

Gaussian laser profile, including a triplet component [1, 4, 8, 14].

G(τ) = A0 +
1

N(1− F + αF )2

[
1− F

1 + τ/τ2D

+
α2F

(1 + τ/τ3D)

1√
1 + τ/(SP2τ3D)

](
1 +

Te−τ/τtrip

1− T

)
(18)

A0 Offset
N Effective number of particles in confocal volume (N = N2D +N3D)
τ2D Diffusion time of surface bound particles
τ3D Diffusion time of freely diffusing particles
F Fraction of molecules of the freely diffusing species (N3D = FN)
α Relative molecular brightness of particle species (α = q3D/q2D)
SP Structural parameter, describes elongation of the confocal volume
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

23



5.4.2 Confocal TIR-FCS

The detection volume is axially confined by an evanescent field and has an effective size of

V = πR2
0deva (19)

where R0 is the lateral extent of the detection volume and deva is the evanescent field depth9.
From the concentration C, the effective number of particles is N = CV . The decay constant
κ is the inverse of the depth deva :

deva =
1

κ
(20)

The model functions make use of the Faddeeva function (complex error function)10:

w(iξ) = eξ
2

erfc(ξ) (21)

= eξ
2 · 2√

π

∫ ∞
ξ

e−α
2

dα

The lateral detection area has the same shape as in confocal FCS. Thus, correlation functions
for two-dimensional diffusion of the confocal case apply and are not mentioned here.

Name TIR (Gaussian/Exp.) 3D
ID 6013
Descr. Three-dimensional free diffusion with a Gaussian lateral detec-

tion profile and an exponentially decaying profile in axial direc-
tion [5, 7, 13].

G(τ) =
1

C

κ2

π(R2
0 + 4Dτ)

(√
Dτ

π
+

1− 2Dτκ2

2κ
w
(
i
√
Dτκ

))
(22)

C Particle concentration in confocal volume
κ Evanescent decay constant (κ = 1/deva)
R0 Lateral extent of the detection volume
D Diffusion coefficient

Name TIR (Gaussian/Exp.) T+3D+3D
ID 6034
Descr. Two-component three-dimensional diffusion with a Gaussian lat-

eral detection profile and an exponentially decaying profile in
axial direction, including a triplet component [1, 4, 5, 7, 8, 13,14].

G(τ) =A0 +
1

N(1− F + αF )2

(
1 +

Te−τ/τtrip

1− T

)
× (23)

×

[
Fκ

1 + 4D1τ/R2
0

(√
D1τ

π
+

1− 2D1τκ
2

2κ
w
(
i
√
D1τκ

))
+

+
(1− F )α2κ

1 + 4D2τ/R2
0

(√
D2τ

π
+

1− 2D2τκ
2

2κ
w
(
i
√
D2τκ

)) ]
9Where the field has decayed to 1/e

10In user-defined model functions, the Faddeeva function is accessible through wofz(). For convenience, the
function wixi() can be used which only takes ξ as an argument and the imaginary i can be omitted.

24



A0 Offset
N Effective number of particles in confocal volume (N = N1 +N2)
D1 Diffusion coefficient of species 1
D2 Diffusion coefficient of species 2
F Fraction of molecules of species 1 (N1 = FN)
α Relative molecular brightness of particle species (α = q2/q1)
R0 Lateral extent of the detection volume
κ Evanescent decay constant (κ = 1/deva)
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

Name TIR (Gaussian/Exp.) T+3D+2D
ID 6033
Descr. Two-component, two- and three-dimensional diffusion with a

Gaussian lateral detection profile and an exponentially decay-
ing profile in axial direction, including a triplet component
[1, 4, 5, 7, 8, 13,14].

G(τ) = A0 +
1

N(1− F + αF )2

(
1 +

Te−τ/τtrip

1− T

)
× (24)

×

[
1− F

1 + 4D2Dτ/R2
0

+
α2Fκ

1 + 4D3Dτ/R2
0

(√
D3Dτ

π
+

1− 2D3Dτκ
2

2κ
w
(
i
√
D3Dτκ

))]

A0 Offset
N Effective number of particles in confocal volume (N = N2D +N3D)
D2D Diffusion coefficient of surface bound particles
D3D Diffusion coefficient of freely diffusing particles
F Fraction of molecules of the freely diffusing species (N3D = FN)
α Relative molecular brightness of particle species (α = q3D/q2D)
R0 Lateral extent of the detection volume
κ Evanescent decay constant (κ = 1/deva)
T Fraction of particles in triplet (non-fluorescent) state
τtrip Characteristic residence time in triplet state

5.4.3 TIR-FCS with a square-shaped lateral detection volume

The detection volume is axially confined by an evanescent field of depth11 deva = 1/κ. The
lateral detection area is a convolution of the point spread function of the microscope of size
σ,

σ = σ0
λ

NA
, (25)

11Where the field has decayed to 1/e

25



with a square of side length a. The model functions make use of the Faddeeva function
(complex error function)12:

w(iξ) = eξ
2

erfc(ξ) (26)

= eξ
2 · 2√

π

∫ ∞
ξ

e−α
2

dα

Name TIR (�xσ/Exp.) 3D
ID 6010
Descr. Three-dimensional diffusion with a square-shaped lateral detec-

tion area taking into account the size of the point spread function;
and an exponential decaying profile in axial direction [11,17].

G(τ) =
κ2

C

(√
Dτ

π
+

1− 2Dτκ2)

2κ
w
(
i
√
Dτκ

))
× (27)

×

[
2
√
σ2 +Dτ√
πa2

(
exp

(
− a2

4(σ2 +Dτ)

)
− 1

)
+

1

a
erf

(
a

2
√
σ2 +Dτ

)]2

C Particle concentration in detection volume
σ Lateral size of the point spread function
a Side size of the square-shaped detection area
κ Evanescent decay constant (κ = 1/deva)
D Diffusion coefficient

Name TIR (�xσ/Exp.) 3D+3D
ID 6023
Descr. Two-component three-dimensional free diffusion with a square-

shaped lateral detection area taking into account the size of the
point spread function; and an exponential decaying profile in
axial direction.
The correlation function is a superposition of three-dimensional
model functions of the type 3D (�xσ) (6010) [11,17].

Name TIR (�xσ) 2D
ID 6000
Descr. Two-dimensional diffusion with a square-shaped lateral detection

area taking into account the size of the point spread function
[11,17]13.

G(τ) =
1

C

[
2
√
σ2 +Dτ√
πa2

(
exp

(
− a2

4(σ2 +Dτ)

)
− 1

)
+

1

a
erf

(
a

2
√
σ2 +Dτ

)]2

(28)

12In user-defined model functions, the Faddeeva function is accessible through wofz(). For convenience, the
function wixi() can be used which only takes ξ as an argument and the imaginary i can be omitted.

26



C Particle concentration in detection area
σ Lateral size of the point spread function
a Side size of the square-shaped detection area
D Diffusion coefficient

Name TIR (�xσ) 2D+2D
ID 6022
Descr. Two-component two-dimensional diffusion with a square-shaped

lateral detection area taking into account the size of the point
spread function.
The correlation function is a superposition of two-dimensional
model functions of the type 2D (�xσ) (6000) [11,17].

Name TIR (�xσ/Exp.) 3D+2D
ID 6020
Descr. Two-component two- and three-dimensional diffusion with a

square-shaped lateral detection area taking into account the size
of the point spread function; and an exponential decaying profile
in axial direction.
The correlation function is a superposition of the two-
dimensional model function 2D (�xσ) (6000) and the three-
dimensional model function 3D (�xσ) (6010) [11,17].

Name TIR (�xσ/Exp.) 3D+2D+kin
ID 6021
Descr. Two-component two- and three-dimensional diffusion with a

square-shaped lateral detection area taking into account the size
of the point spread function; and an exponential decaying pro-
file in axial direction. This model covers binding and unbinding
kintetics.
The correlation function for this model was introduced in [11].
Because approximations are made in the derivation, please verify
if this model is applicable to your problem before using it.

27



Acknowledgements

I thank André Scholich (TU Dresden, Germany) for initial proof reading of the manuscript
and Grzegorz Chwastek, Franziska Thomas, and Thomas Weidemann (Biotec, TU Dresden,
Germany) for critical feedback on PyCorrFit.

References

[1] S. R. Aragon and R. Pecora. Fluorescence correlation spectroscopy as a probe of
molecular dynamics. The Journal of Chemical Physics, 64(4):1791–1803, 1976. doi:

10.1063/1.432357.

[2] M. Brinkmeier, K. Dörre, J. Stephan, and M. Eigen. Two-beam cross-correlation: a
method to characterize transport phenomena in micrometer-sized structures. Analytical
Chemistry, 71(3):609–616, Feb 1999. doi:10.1021/ac980820i.

[3] Markus Burkhardt. Electron multiplying CCD – based detection in Fluorescence Correla-
tion Spectroscopy and measurements in living zebrafish embryos. PhD thesis, Biophysics,
BIOTEC, Technische Universität Dresden, Tatzberg 47–51, 01307 Dresden, Germany,
2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61021.

[4] Elliot L. Elson and Douglas Magde. Fluorescence correlation spectroscopy. i. conceptual
basis and theory. Biopolymers, 13(1):1–27, 1974. doi:10.1002/bip.1974.360130102.

[5] Kai Hassler, Tiemo Anhut, Rudolf Rigler, Michael Gösch, and Theo Lasser. High count
rates with total internal reflection fluorescence correlation spectroscopy. Biophysical
Journal, 88(1):L01–L03, January 2005. doi:10.1529/biophysj.104.053884.

[6] Ulrich Haupts, Sudipta Maiti, Petra Schwille, and Watt W. Webb. Dynamics of fluo-
rescence fluctuations in green fluorescent protein observed by fluorescence correlation
spectroscopy. Proceedings of the National Academy of Sciences, 95(23):13573–13578,
1998. doi:10.1073/pnas.95.23.13573.

[7] Yu Ohsugi, Kenta Saito, Mamoru Tamura, and Masataka Kinjo. Lateral mobil-
ity of membrane-binding proteins in living cells measured by total internal reflec-
tion fluorescence correlation spectroscopy. Biophysical Journal, 91(9):3456–3464, 2006.
doi:10.1529/biophysj.105.074625.

[8] A. G. Palmer and N. L. Thompson. Theory of sample translation in fluorescence cor-
relation spectroscopy. Biophysical Journal, 51(2):339–343, Feb 1987. doi:10.1016/

S0006-3495(87)83340-4.

[9] Zdeněk Petrášek and Petra Schwille. Precise measurement of diffusion coefficients using
scanning fluorescence correlation spectroscopy. Biophysical Journal, 94(4):1437–1448,
February 2008. doi:10.1529/biophysj.107.108811.

[10] Hong Qian and Elliot L. Elson. Analysis of confocal laser-microscope optics for 3-
d fluorescence correlation spectroscopy. Applied Optics, 30(10):1185–1195, Apr 1991.
doi:10.1364/AO.30.001185.

[11] Jonas Ries, Eugene P. Petrov, and Petra Schwille. Total internal reflection fluorescence
correlation spectroscopy: Effects of lateral diffusion and surface-generated fluorescence.
Biophysical Journal, 95(1):390 – 399, 2008. doi:10.1529/biophysj.107.126193.

28

http://dx.doi.org/10.1063/1.432357
http://dx.doi.org/10.1063/1.432357
http://dx.doi.org/10.1021/ac980820i
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61021
http://dx.doi.org/10.1002/bip.1974.360130102
http://dx.doi.org/10.1529/biophysj.104.053884
http://dx.doi.org/10.1073/pnas.95.23.13573
http://dx.doi.org/10.1529/biophysj.105.074625
http://dx.doi.org/10.1016/S0006-3495(87)83340-4
http://dx.doi.org/10.1016/S0006-3495(87)83340-4
http://dx.doi.org/10.1529/biophysj.107.108811
http://dx.doi.org/10.1364/AO.30.001185
http://dx.doi.org/10.1529/biophysj.107.126193


[12] R. Rigler, Ü. Mets, J. Widengren, and P. Kask. Fluorescence correlation spectroscopy
with high count rate and low background: analysis of translational diffusion. European
Biophysics Journal, 22:169–175, 1993. doi:10.1007/BF00185777.

[13] Tammy E. Starr and Nancy L. Thompson. Total internal reflection with fluorescence
correlation spectroscopy: Combined surface reaction and solution diffusion. Biophysical
Journal, 80(3):1575 – 1584, 2001. doi:10.1016/S0006-3495(01)76130-9.

[14] Nancy Thompson. Fluorescence correlation spectroscopy. In Joseph Lakowicz, Chris D.
Geddes, and Joseph R. Lakowicz, editors, Topics in Fluorescence Spectroscopy, volume 1
of Topics in Fluorescence Spectroscopy, pages 337–378. Springer US, 2002. doi:10.

1007/0-306-47057-8_6.

[15] Jerker Widengren, Ülo Mets, and Rudolf Rigler. Fluorescence correlation spectroscopy
of triplet states in solution: a theoretical and experimental study. The Journal of
Physical Chemistry, 99(36):13368–13379, 1995. doi:10.1021/j100036a009.

[16] Jerker Widengren, Rudolf Rigler, and Ülo Mets. Triplet-state monitoring by fluorescence
correlation spectroscopy. Journal of Fluorescence, 4:255–258, 1994. doi:10.1007/

BF01878460.

[17] Stoyan Yordanov, Andreas Best, Klaus Weisshart, and Kaloian Koynov. Note: An
easy way to enable total internal reflection-fluorescence correlation spectroscopy (tir-
fcs) by combining commercial devices for fcs and tir microscopy. Review of Scientific
Instruments, 82(3):036105, 2011. doi:10.1063/1.3557412.

[18] Bo Zhang, Josiane Zerubia, and Jean-Christophe Olivo-Marin. Gaussian approximations
of fluorescence microscope point-spread function models. Applied Optics, 46(10):1819–
1829, Apr 2007. doi:10.1364/AO.46.001819.

29

http://dx.doi.org/10.1007/BF00185777
http://dx.doi.org/10.1016/S0006-3495(01)76130-9
http://dx.doi.org/10.1007/0-306-47057-8_6
http://dx.doi.org/10.1007/0-306-47057-8_6
http://dx.doi.org/10.1021/j100036a009
http://dx.doi.org/10.1007/BF01878460
http://dx.doi.org/10.1007/BF01878460
http://dx.doi.org/10.1063/1.3557412
http://dx.doi.org/10.1364/AO.46.001819

	Introduction
	Preface
	System prerequisites
	Hardware
	Software

	Running PyCorrFit

	Working with PyCorrFit
	Workflow
	The main window

	The menu bar
	File menu
	File / Import model
	File / Load data
	File / Open session
	File / Comment session
	File / Clear session
	File / Save session
	File / Exit

	Tools menu
	Tools / Data range
	Tools / Overlay curves
	Tools / Batch control
	Tools / Global fitting
	Tools / Average data
	Tools / Trace view
	Tools / Statistics view
	Tools / Page info
	Tools / Slider simulation

	Current Page
	Current Page / Import Data
	Current Page / Save data (*.csv)
	Current Page / Save correlation as image
	Current Page / Save trace view as image
	Current Page / Close page

	Models
	Preferences
	Help

	4 Hacker's corner
	Theoretical background
	Derivation of FCS model functions
	General Autocorrelation function for a single species
	General Autocorrelation function for multiple species
	Cross-correlation
	Extension of the theory

	Non-linear least-squares fit
	Weighted fitting
	Implemented model functions
	Confocal FCS
	Confocal TIR-FCS
	TIR-FCS with a square-shaped lateral detection volume


	Acknowledgements

