
The Kinemage File Format, v1.0

Ian W. Davis, Jane S. Richardson, David C. Richardson

April 20, 2007

Abstract

This document describes the syntax and semantics of the core feature-set of the
kinemage file format. Since even the core features are extensive, the description
has been broken into two logical halves. The first section describes the semantics
and high-level syntax of kinemage files—all the information typically needed to
author a new kinemage file from scratch. The second section formally describes
the low-level syntax that underlies the entire format, which is important for pro-
grammers writing kinemage parsers.

This document does not cover the philosophy, rationale, or history of the kinemage
format, nor is it a tutorial in using or creating kinemages. It assumes the user has
some experience viewing and interacting with existing kinemages and now wants
either (1) to create a new kinemage file by hand or programmatically, starting from
scratch, or (2) modify an existing kinemage file by hand at the plain-text level.

Contents

I Semantics 2

1 Overview of a kinemage file 3

2 Lists 3

3 Points 6

4 Kinemages, groups, and subgroups 7

5 Masters 9

6 Colors and aspects 10

7 Views and display options 12

8 Metadata 14
8.1 Kinemage text hyperlinks . 15

2

9 Alternative spellings 15

II Syntax 17

10 Characters in kinemage files 17
10.1 Whitespace . 17
10.2 Alphanumerics . 18
10.3 Punctuation . 18

11 Tokens in kinemage files 18
11.1 Beginning-of-line . 19
11.2 Quoted tokens . 19

11.2.1 Identifiers . 19
11.2.2 Comments . 19
11.2.3 Aspects . 20
11.2.4 Single quoted strings (pointmasters) 20
11.2.5 Double quoted strings . 20

11.3 Unquoted tokens . 20
11.3.1 Keywords . 21
11.3.2 Properties . 21
11.3.3 Integers . 22
11.3.4 Numbers . 22
11.3.5 Literals . 23

11.4 Plain text blocks . 23

Part I

Semantics
This first part of the document describes the semantics and high-level syntax of kinemage
files, giving descriptions of the most commonly used keywords and the various options
and parameters that accompany them. This level of detail is important both to kinemage
authors and to programmers who want to use the kinemage format. While the core fea-
tures described here are fairly stable and will remain so, additional features may be
added with some frequency. Except as noted, all the features described here work in
both Mage and KiNG, which are the two primary kinemage viewers as of this writing.

A note about syntax: the full description of kinemage syntax appears in the second
part of this document, but it’s more information than most authors will need. The
kinemage format is a fairly intuitive, mostly free-form language that should be easy to
pick up. That said, here are three “gotchas” that new authors should be aware of:

• Keywords (words starting with the @ symbol) must appear at the very beginning
of a line in order to be recognized. Nothing can come before them, not even
spaces.

[1] Overview of a kinemage file 3

• Properties (words that end with an = sign) cannot have a space (or anything
else) between the word and the = sign. Space after the = is optional, but it is
not permitted before. Thus, we can write color= red or color=red, but not
color = red. This looks a little awkward at first, but you’ll soon get used to it.

• List definitions must appear all on one line. This is a good rule of thumb for the
whole file (though not a requirement): each keyword must start a new line, and
all its relevant options and parameters should probably appear on that same line.
Regardless, the next keyword must start another line. When defining a list, one
point is typically listed per line.

1 Overview of a kinemage file
The kinemage file format is a plain-text, human-readable, human-editable format for
three-dimensional vector graphics. The overall structure is an optional @text block de-
scribing the contents of the file, followed by one or more kinemages. The kinemages
themselves encode a hierarchical organization of 3-D graphics primitives like lines,
balls, and triangles that have been optimized to convey the most possible information
about the ideas underlying the visualization. Each of these kinemages begins with a
@kinemage statement, followed by display options, view and master definitions, etc.
(the header), and then followed by a series of group, subgroup, list, and point defini-
tions (the body).

2 Lists
Depending on how you look at it, either the list or the point could be considered the fun-
damental unit of a kinemage. Points specify particular locations in three-dimensional
space by listing an X, Y, and Z coordinate. Lists bring together collections of points to
describe 3-D primitives. Some primitives are defined by only one point (for instance, a
ball is specified by it’s center), but others need more – a line segment needs two end-
points, and a triangle needs three corners. Each list has enough points in it to describe
one or more primitives, and all the primitives in a list are of the same type1 – all balls,
say, or all triangles. For example, a list might contain all the line segments that form
the outline of a cube, or all the dots representing one particular data set on a graph.
Where it makes logical sense to group a bunch primitives into a single list, it’s a good
idea, because it will more efficient than creating a separate list for each one.

There are seven basic types of list, corresponding to seven different types of primi-
tive:

Ball lists specify spheres of some finite size. They’re typically drawn as flat, filled
circles plus a little white highlight, which looks quite convincing as a “real”
rendered sphere. However, they may not look right if they intersect other objects,
with one exception: line segements that start or end exactly at the ball’s center
are rendered correctly.

1In some instances, Mage can accomodate various point types within one list.

[2] Lists 4

Sphere lists are very similar to ball lists, but hint to the display program that the ball
is large and may intersect other objects in a complex way. Depending on the
kinemage viewer you’re using, the spheres may look more realistic, at the ex-
pense of taking more time to render.

Ring lists are screen-oriented circles around a point — think of them as just the outline
of a ball. They’re useful in place of balls in situations where you want to see (for
example) lines converging on the center point.

Dot lists specify small points in space, like a ball or sphere that’s just big enough to
see. They’re a good alternative to very small balls or spheres, because they’re
faster to draw.

Label lists specify short text labels anchored to a particular point in space. The label
swings around as the kinemage is rotated so it’s always facing forward and is
right side up.

Vector lists specify a set of line segments, which are often connected head-to-tail in
a polyline. However, a vector list can contain any number of separate line seg-
ments, too.

Triangle lists specify filled triangles. Like vectors are often chained together into
polylines, triangles are chained into triangle strips. Points 1, 2, and 3 make
up the first triangle; then points 2 and 3 are reused together with point 4 for a
second triangle. On it goes, with a 3, 4, and 5 making the third triangle; 4, 5 and
6 making the fourth, and so on. Traditionally, all the triangles in one list have to
be part of a single connected strip.

Ribbon lists are very similar to triangle lists, except that pairs of consecutive triangles
are assumed to lie in the same plane. In fact, the lighting effects are manipulated
so that the four points look like they form a flat, four-sided polygon even if they
really don’t. As the name implies, this is used for ribbons that curl through space
but need to look smooth.

In the kinemage file, lists are specified by an @ symbol followed by the list type and the
word “list”, all lower case and without any spaces in between. The entire list definition
must be on a single line; it cannot be split across multiple lines. The first item after
the @list keyword is the name of the list, enclosed in curly braces. The options listed
below then follow in any order, as desired:

• The word off requests that the list not be initially visible when the kinemage
is loaded. If it has an on/off button in the button panel, the user may turn it on
manually, or it may be turned on by a master button.

• The word nobutton requests that the list not have an on/off button even if it
would have otherwise. Note that many lists will not have an on/off button anyway
because their subgroup or group is dominant.

[2] Lists 5

• radius= #.# and width= # are used to specify the size of balls/spheres/rings
and the line width of vectors/dots/rings, respectively. Radius may be a decimal
number, but width refers to a number of pixels on the screen and must be an
integer between 1 and 7. Lines and dots default to a width of 2. You should
always specify a radius for balls, spheres, and rings explicitly.

• Ball or sphere lists marked with nohighlight will be drawn as flat colored disks
and will not have a white highlight drawn to make them look 3-D.

• color= colorname specifies the base color for objects in the list; however, the
list color interacts with the colors of individual points (if any). By default, lists
are white. See section 6 for more information about colors.

• alpha= #.# specifies the opacity of objects from 1.0 (fully opaque) to 0.0 (invis-
ible). Alpha is currently supported only by KiNG and only for triangle, ribbon,
ball, and sphere lists.

• master= {mastername} specifies that this list is controlled by the named mas-
ter. A given list may have multiple master= statements, but you should read
section 5 to see how multiple masters interact.

• clone= {listname} and instance= {listname} specify that this list has the
same points in it as the named list, which must be of the same type and must have
been declared before the current list. Although is has the same points, this list
must have its list properties specified explicitly (color, radius, etc.), even if they
are intended to be the same as those of the cloned/instanced list. Clone is purely
a convenience for kinemage authors; the current list will be a totally independent
copy of the cloned list that just happens to have the same contents. When the
kinemage is saved, both lists will be written out in full without using clone=.
Instance, on the other hand, actually re-uses the same point data, so editing the
points of one list will affect all its instances too. The instance= property will
appear in the saved kinemage. Instance is a good way to make more efficient use
of memory in certain cases, such as when an identical object needs to appear in
multiple frames of an animation.

• dimension= # specifies how many coordinates will be associated with each
point in the list (default is 3 — x, y, z). This is useful for plotting and graphing
in high-dimensional spaces. All the lists in a kinemage should either have the
same number of dimensions or be normal lists without a dimension specifier.

A few sample list declarations are shown below.

@balllist {Circles} radius= 3.5 nohighlight off
@spherelist {Mars look-alikes} radius= 10000 color= red master= {planets}
@vectorlist {tiger’s tail} color= orange width= 5 nobutton
@trianglelist {veil} color= yellowtint alpha= 0.25
@trianglelist {a newer veil} color= white alpha= 0.3 clone= {veil}

[3] Points 6

3 Points
Points determine the actual geometry of the objects in a kinemage file. At a minimum,
each point must specify an X, Y, and Z coordinate. (Points in lists with a dimension=
may have more or less than three coordinates.) Coordinates are given in a right handed
Cartesian system. The “Cartesian” part just means that the X, Y, and Z axes are all at
right angles to each other. The “right handed” part means that if you’re looking down
the positive Z axis toward the origin, the positive Y axis goes up and the positive X axis
goes to the right. Coordinates can be any possible decimal number, but it’s a good idea
to not make them all really large (say, all in the millions) or really small (thousandths
and less), because you may lose accuracy in some kinemage viewers.

In addition to coordinates, it’s a very good idea to give every point an ID, even
though this is not strictly required. The ID appears when the user picks the point with
the mouse, and for points in a label list the ID is actually the text that will be displayed
for the label. IDs are allowed to be empty (just a pair of curly braces), and this is
preferrable to no ID at all2. The special ID {”} means that the point will have the same
ID as the point that preceded it; if all the points in a list have the same ID, all but the
first can have {”} for their ID.

Points are typically writen one to a line, though they can span multiple lines or
more than one point can appear on the same line. The ID must come first, enclosed
in curly braces, and the coordinates must come last. In between, there are a lot of
per-point options that can be employed in any order:

• The P flag marks a point in a vectorlist as starting a new polyline. The first point
in the list is automatically P, but after that line segements are drawn from one
point to another until a P point is encountered. To draw a series of disconnected
single line segments, every other point should be marked P (starting with the first
one). The P flag does not affect triangle lists.

• Points marked with the U flag are “unpickable” under normal circumstances,
meaning that clicking on them with the mouse will not do anything.

• The X flag can be used to break one triangle list into multiple triangle strips,
analogous to the P flag for vector lists.

• Points can be given their own color just by writing the color name. They can
also be assigned alternative colors for different coloring schemes through the
use of aspects (see section 6). Aspects are lists of single uppercase letters A - Z
enclosed in parentheses. If aspects are used in a file, every point should have the
same number of aspects specified. The color of a line segment is the color of its
second point, not its first; likewise, the color of a triangle is the color of its third
point.

• Width and radius can also be specified on a point-by-point basis. Widths are
specified as width1, width2, ... width7; radii are specified as r= #.#.

2KiNG interprets a missing point ID as the empty string, while Mage displays the X,Y,Z coordinates of
the point as its ID in this case.

[4] Kinemages, groups, and subgroups 7

• The visibility of points can also be controlled by pointmasters, which are anal-
ogous to the masters that control lists, subgroups, and groups. Pointmasters are
identified by single character codes (the lowercase letters a - z and the numbers
1 - 6) enclosed in single quote marks. Multiple point masters interact differently
than multiple masters do; see section 5 for more information.

• Each point can have an additional text “comment” associated with it, which
should be enclosed in angle brackets. Some kinemage viewers use these for
special purposes, while others may ignore them altogether.

Some example point definitions are shown below; these points are not intended to all
belong to the same list!

{clown nose} red r= 2.4 1.0 2.0 3.0
{x-axis}P U 0 0 0
{”} <other end of X axis> U width1 10 0 0
{really complicated} ’aeg’ (HZTU) 8.31 19.78 42.13

4 Kinemages, groups, and subgroups
Complicated kinemages may have hundreds of lists in them, which would quickly
become unmanagable for the user. Groups and subgroups allow us to organize lists
hierarchically, so that sets of related objects can be shown or hidden as a unit, and
unneccessary detail can be supressed. There are also cases where several kinemages
deal with different aspects of the same visualization problem, and the kinemage format
provides for collecting these multiple kinemages into a single file.

Only the start of each kinemage, group, subgroup, or list is marked, and not the
end. A kinemage declaration must appear at the start of the file, and everything else
in that file is considered part of the kinemage until another kinemage declaration is
found. In the same way, a group includes all the subgroups and lists that follow it,
until another group is declared or the end of the file is reached. Likewise, subgroups
contain all the lists that follow them, until another group or subgroup declaration is
encountered. Lists contain all the points that follow them, until another list, subgroup,
or group declaration is encountered. In this way, a hierarchical organization is built up
with points gathered into lists, lists gathered into subgroups, subgroups gathered into
groups, and groups gathered into kinemages.

Kinemage declarations are very simple: the @kinemage keyword, followed by an
identifying number. The first kinemage in a file should be number 1, the second should
be number 2, and so on3. Thus, every kinemage file starts like this, with nothing
preceding it except possibly a @text block (see section 8):

@kinemage 1

Group and subgroup declarations are only slightly more complicated. They start with
@group or @subgroup, respectively, followed by the (sub)group name in curly braces,

3Generally, you’re OK as long as the numbers are all different and are monotonically increasing.

[4] Kinemages, groups, and subgroups 8

possibly followed by some of the following flags. As with lists, group and subgroup
declarations may not span multiple lines.

• The word off requests that the (sub)group not be initially visible when the
kinemage is loaded. If it has an on/off button in the button panel, the user may
turn it on manually, or it may be turned on by a master button.

• The word nobutton requests that the (sub)group not have an on/off button even
if it would have otherwise. Note that some subgroups will not have an on/off
button anyway because their group is dominant.

• The word dominant requests that the buttons of objects below this (sub)group in
the hierarchy not be shown. Dominant subgroups hide the buttons of their lists;
dominant groups hide the buttons of their subgroups and their lists.

• The word collapsable is similar to dominant. When a collapsable group is on,
the buttons of its subgroups and groups are visible as usual. When the collapsable
group is off, however, those buttons are supressed, as though it were dominant.
The situation is analogous for collapsable subgroups and the lists under them.

• master= {mastername} specifies that this (sub)group is controlled by the named
master. A given (sub)group may have multiple master= statements, but you
should read section 5 to see how multiple masters interact.

• dimension= # is a shortcut for specifying dimension= on all the lists in a par-
ticular group or subgroup.

• The words animate and 2animate can only be used with groups. Groups so
marked become part of the first or second animation, respectively. When the
kinemage is loaded, all animate groups except the first one are turned off, regard-
less of any off flags. The user can the cycle the animation forward/backward
so that the next/previous group is on and all the others are off. Animate groups
can be turned on or off by the user without any restrictions, but stepping forward
or backward in the animation will again ensure that only one of them is on at
a particular time. The 2animate flag lets authors establish a second, unrelated
animation that behaves in exactly the same way. In general, no group should be
marked with both animate and 2animate.

• The word select can only be used with groups. Groups so marked are under-
stood to be data points in some kind of plot, so that tools for selecting subsets of
data should operate on select groups and ignore other groups.

The following are typical group and subgroup declarations:

@group {first frame} dominant animate
@group {not visible} dominant nobutton master= {use this instead}
@group {lots of stuff} collapsable
@subgroup {not very important} off master= {optional stuff}

[5] Masters 9

5 Masters
The so-called “master” buttons provide an important facility for complex kinemages:
the ability to group and organize the elements by a secondary scheme that may be
very different from the primary, hierarchical organization. For example, if you were
making an interactive map of the world, you might decide to make one group for each
continent, and one subgroup for each country. However, it might also be nice to turn on
and off all the rivers together, or all the cities. There might be a {rivers} lists in each
country, but without masters all of them would have to be toggled individually. With
masters, you can have all of the rivers toggled by a single button that lives outside the
ordinary hierarchy of groups, subgroups, and lists.

Masters are automatically created whenever they’re mentioned in the master= part
of a list, subgroup, or group declaration. Their buttons appear in the same button
panel as group/subgroup/list buttons, but after all of those and somewhat separated
from them. You can control the order and presentation of masters a little bit better
by using the @master keyword, which usually appears in the kinemage “header” –
after @kinemage but before the group, subgroup, and list declarations. @master is
followed by the master name in curly braces, which must exactly match the name used
in master= statements. The name may be followed by the indent flag, which hints
that its button should be indented relative to the other master buttons so as to imply the
same sort of hierarchy that occurs in the regular buttons. (However, for the masters this
is purely cosmetic.)

The effect of a master on a list, subgroup, or group is transient – turning something
on or off with a master does not prevent the user from turning that item on or off man-
ually. However, for items marked with more than one master, the masters do interact
with each other. Consider the following list:

@dotlist {demo list} master= {A} master= {B} master={C}

If any one of the master buttons is toggled from on to off, our list will be turned off.
However, if one of the masters is toggled from off to on, our list will be toggled on
if and only if all of the other masters that control it are also currently on. (Of course,
if the list was already on, it will remain so.) If, for example, masters B and C are
off and master A is on, then turning B on will not turn the list on (because C is off).
Subsequently turning C on will, however, turn the list on (because both A and B are
also on).

Individual points can also be controlled by a master-like mechanism, called point-
masters. Due to memory limits, there are only 32 possible pointmasters that can be
used in a particular kinemage. They are identified by single-character codes; lowercase
letters are typical, but any legal character is allowed. One or more of these single-
character codes are listed inside of single quote marks for some or all of the points
in a kinemage4. Each pointmaster code is associated with a named master button
by a line that starts with @pointmaster, then one (or rarely, more than one) single-
character code between single quotes, then the master name in curly braces. If the

4Mage does not (yet) support multiple pointmasters for a single point, so it will only accept a single
character in single quotes.

[6] Colors and aspects 10

name matches with the name of an ordinary master, then that button will control both
the list/subgroup/group master and the pointmaster.

As with masters, the @pointmaster declaration is optional; pointmaster buttons
will be created automatically if needed. Likewise, multiple pointmasters for a single
point interact the same way that multiple masters for a single list do: that is, any master
will turn the point off, but all of them must be on in order to turn it back on.

By default, master and pointmaster buttons will begin in the “on” (checked) state,
unless all of the groups/subgroups/lists controlled by that master are marked as off in
the kinemage, in which case the master starts off unchecked. Master and pointmaster
declarations can optionally be followed by either on or off, in which case the kinemage
acts as though that master was clicked on or off immediately after the kinemage was
loaded. This is not used very often, but can be helpful for quickly modifying which
groups, etc. will be initially visible when the kinemage is loaded.

Shown below are some typical master and pointmaster declarations:

@master {rivers}
@pointmaster ’a’ {large cities}
@pointmaster ’b’ {small cities} off
@pointmaster ’ab’ {all cities}
@master {dual purpose} indent
@pointmaster ’c’ {dual purpose}

6 Colors and aspects
Color-coding is one of the most-used feature in any visualization system, so the kinemage
format provides lots of options related to coloring. We’ve already seen how to assign a
color to a whole list or a single point in their respective sections, and we’ve seen that
point colors, when present, generally override the color specified for the list. Below
are all 28 of the color names that can be used with lists and points:

Saturated colors Semi-sat. colors Pastel colors Neutrals
red (A) pink (N) pinktint (V)

orange (B) peach (P) peachtint (Q)
gold (C)

yellow (D) yellow (D) yellowtint (R)
lime (E)
green (F) sea (G) greentint (S)
sea (G) white (W)

cyan (H) gray (X)
sky (I) brown (Y)
blue (J) sky (I) bluetint (T)

purple (K) lilac (O) lilactint (U) invisible (Z)
magenta (L) deadwhite
hotpink (M) deadblack

The letters listed in parentheses are the aspect codes for each color, which will be
discussed below. Colors are organized so that the columns form progressions of hue,

[6] Colors and aspects 11

and the rows form progressions of saturation, although the relationships are somewhat
different on a white background. Some colors appear in two different places in the
chart because they serve two different “purposes”. See the palette kinemage built into
KiNG for more details on how to use color effectively.

Sometimes you might develop a kinemage in which tens or hundreds of different
lists should all be the same color – but you aren’t sure which color. Instead of using
the find-and-replace feature of a text editor to test out different options, you can define
a symbol to stand in for the color, and then change only the definition of the symbol.
This symbolic or “variable” color name is called a colorset, and is declared with the
@colorset keyword, followed by the symbolic name in curly braces and then the name
of a normal kinemage color. Later on, you can assign the symbolic color name to lists
(but not individual points). For example,

@colorset {water color} sky
@vectorlist {river} color= {water color}
@balllist {ponds} color= {water color}

It is also possible to define custom colors that are not part of the default kinemage
palette. They are specified in terms of hue, saturation, and value (HSV). Hue ranges
from 0 (red) to 360 (also red) degrees; saturation ranges from 0 (grayscale) to 100
(intense color); and value ranges from 0 (black) to 100 (full brightness). It is possible to
give different definitions for white vs. black background, as is done for most kinemage
colors, but if the specification for white background is left off, the same color will be
used on both black and white. For example,

@hsvcolor {Evergreen} 120 70 30
@hsvcolor {Smoke} 0 0 80 0 0 20
@hsvcolor {Graphite} 0 0 20 0 0 80

Since color schemes are so important to visualization, it is sometimes useful to have
multiple color schemes within one kinemage. For example, a map might be colored by
elevation, by rainfall, or by population density, depending on its intended use. Aspects
provide a mechanism for specifying more than one possible point color for each point,
only one of which is active at a particular time.

Aspects must be declared with the @aspect keywords in the kinemage header; the
declaration is not optional as it is e.g. for masters. Each point that has aspect coloring
(not all points in a kinemage have to) should have the same number of aspect codes
as there are @aspect definitions in the kinemage. When a point should be specially
colored for some aspects but not others, a space character (“ “) can be used instead
of a letter to mean that point’s “normal” color. As explained in the section on points,
the single-letter aspects codes for a point appear inside parentheses as part of the point
definition (see section 3). For example:

@1aspect {Population density}
@2aspect {Quality of universities}
@3aspect {Number of bars}
@balllist {Cities in the Triangle} color= white radius= 2

[7] Views and display options 12

{Durham} (ABC) 0 1 0
{Raleigh} (DEF) 1 0 0
{Chapel Hill} (G I) -1 0 0
{Cary} (J) 0.5 -0.5 0

7 Views and display options
There are a number of keywords that control the default presentation of a kinemage to
the user. Choosing the right options is an important guide to the user, although s/he can
override them later.

All of the following keywords are used to define a pre-set view of the kinemage.
The keywords are given a leading number that defines which view they belong with
(show below for view 1, but 2, 3, etc. can be substitued to define additional views).
View 1 is the default that will be shown when the kinemage is first opened. Although
a view definition may legally omit any of these components, it’s best to define all of
them explicitly to ensure the desired behavior. In the definitions below, the symbol #
stands for any number, decimal or integer.

@1viewid {VIEW NAME} gives a label that will identify this view to the user. It
should be unique, but is not required to be.

@1center # # # gives the coordinates of the center of the view. The model will rotate
around this point, which will be centered.

@1matrix # # # # # # # # # gives an orthonormal rotation matrix that defines the ori-
entation of the model. (Orthonormal meaning all the row vectors are orthogonal
to each other, all the column vectors are orthogonal to each other, and all these
vectors have length 1.) If you intend to multiple this matrix by your coordi-
nates (as a column vector), you should read the numbers as going down the first
column, then down the second, and so on. If you intend the multiply your coordi-
nates (as a row vector) by the matrix, then you should read the series of numbers
as going across the first row, then across the second, etc. That is, one version of
the matrix is the transpose of the other.

@1span # defines how much of the kinemage is visible—whether you’re zoomed
in close or zoomed way out. Specifically, the given distance in model coordi-
nates will just fill the graphics area either horizontally or vertically (whichever
is smaller). Thus, larger spans show more of the model, and smaller spans show
less (but in greater detail).

@1zoom # is an alternative specification for span; it controls how much of the kinemage
is visible. A zoom of 1.0 ensures the whole kinemage just fits within the graphics
area, and larger zooms cause the view to zoom in closer. It’s better to give a span
than a zoom, because zoom depends on the space the kinemage occupies. If later
add (or remove) something to the kinemage that changes its “envelope”, then
your predefined views will shift to show something other than you had originally
intended. Span, on the other hand, is independent of the content of the kinemage.

[7] Views and display options 13

@1zslab # is the complement of span or zoom—it defines how thick a slice of the
model you can see. Obviously, if the full model was displayed in-focus when
you were zoomed in very close, all the extra detail in the far background could
be extremely distracting. Ditto for things right in front of your nose that could
blot out the area of interest. Thus, everything that’s more than a certain distance
in front of or behind the center of rotation is not shown. (Computer graphics folks
call this a “slab” or a pair of “clipping planes.”) The units here are arbitrary: a
value of 200 means that the front-to-back distance between clipping planes is
equal to (the lesser of) the width or height of the graphics area. Other values
mean the slab will be #/200 times this wide, so smaller values give a thinner slab
and larger values, a thicker one.

@1axischoice # # # specifies which coordinates will be mapped to the X, Y, and Z
axes (respectively) for high-dimensional kinemages. The indices start from 1, so
“1 2 3” would correspond to the normal X, Y, Z display. This cannot be used
to reorder the axes for normal 3-D points, but it can for high-dimensional points
(i.e., “3 2 1” is legal only for high-dimensional points). This keyword should be
omitted from kinemages that don’t have any high-dimensional points in them.

There are a number of other useful keywords that correspond to display settings com-
mon in most kinemage viewers. As note above, these are only hints: the user can
always choose to override them, and the kinemage viewer is not even guaranteed to
pay attention to them.

@perspective suggests that the kinemage been shown with simulated perspective pro-
jection. This is often desirable for geometric objects, so that parallel lines actu-
ally converge in the distance, cubes really look like cubes, and so on. By default,
kinemages are shown with orthographic projection.

@flat hints that there is no useful depth (Z-coordinate) information in the kinemage,
and that the default mode of interaction should be translation (sliding the kinemage
around in the X-Y plane) rather than rotation. This is helpful for things like 2-D
charts and graphs.

@onewidth asks that lines be drawn in a consistent width regardless of their location.
By default, lines in the front of the view are thicker and lines in the back are
thinner, to aid in giving a feeling of depth and three-dimensionality.

@thinline suggests the default line width be as thin as possible, rather than the stan-
dard 2 pixels.

@whitebackground hints that the kinemage would look best on a white background,
with its associated color palette. By default, the black background and palette
are used.

@listcolordominant asks that the individually specified colors of points be ignored in
favor of the base color of their list.

[8] Metadata 14

8 Metadata
In addition to describing a geometrical object or scene, the kinemage language allows
authors to describe the meaning of the graphical objects. This sort of information
is thus data about the (primary) data, a.k.a. metadata. The following keywords are
supported:

@text marks the beginning of a block of free-form, plain-text information that should
be made available to users of the kinemage. The text continues until the next
keyword is encountered; thus, the only restriction on the content of text block is
that it not contain any @ symbols at the very beginning of a line. Indenting the
@ with a space is a perfectly acceptable way of getting around this limitation.
Text is specified for the kinemage file as a whole. Thus, it will probably pertain
to all the kinemages in that file, whether by describing them sequentially or dis-
cussing the relationships among them. Some kinemage viewers support special
hypertext links in the text, which are delimited by *{ and }*. The specific syntax
is described below. Multiple @text blocks in the same file will be concatenated
together in the order they appear.

@caption works much like @text, but is generally shorter (a few lines at most) and
pertains to a single kinemage. Thus, @caption must appear somewhere after a
@kinemage statement, while @text can be the first thing in a file.

@title {KIN TITLE} gives a brief title that identifies this kinemage, as a more user-
friendly label than its index number.

@copyright {COPYRIGHT INFO 2004} notifies users of who owns the copyright
to this kinemage file.

@pdbfile {FILENAME} lists a Protein DataBank file that corresponds to the model
shown in this kinemage. Used only for kinemages showing macromolecular
structures.

@mapfile {FILENAME} lists an electron density map that corresponds to the model
shown in this kinemage. Used only for kinemages showing macromolecular
structures.

@command {UNIX CMD} suggests a command that the user or the kinemage viewer
could run to generate additional kinemage data, which could then be merged into
the current file.

@dimensions {DIM1} {DIM2} ... specifies human-readable labels for the coordinates
in a high-dimensional kinemage. For use with the list dimension= property and
@axischoice.

@dimminmax MIN1 MAX1 MIN2 MAX2 ... specifies the minimum and maximum
values for a high-dimensional kinemage. These ranges are not enforced on indi-
vidual points, but are used for scaling the axes when displaying parallel coordi-
nates.

[8.1] Kinemage text hyperlinks 15

@dimscale S1 S2 ... specifies the scaling that should be applied to convert coordinates
as they appear in the kinemage to coordinates as they should be displayed to the
user. See below for more details.

@dimoffset T1 T2 ... specifies the translation that should be applied to convert co-
ordinates as they appear in the kinemage to coordinates as they should be dis-
played to the user. If both scaling and offset are specified, the original trans-
form is understood to be kin = s(orig + t), and the transform from coordinates
stored in the kinemage file back to coordinates intended for display is then
display = orig = (kin/s)− t. The default values are s = 1 and t = 0.

8.1 Kinemage text hyperlinks
Both Mage and KiNG support hypertext commands in the text window. When the user
clicks on one of these with the mouse, some action is invoked. Hyperlinks are delimited
by *{ and }*. They may contain multiple commands, which are separated by commas.
Common commands are:

kinemage 1 Takes the user to the first kinemage in the file.

kin 1 (short form for “kinemage”)

view 2 Takes the user to the second view in the current kinemage. May be combined
with “kinemage”.

v=2 (short form for “view”)

alloff Turns off all master buttons. Usually followed by one or more “master ... on”
commands.

master= {Master Name} on/off Turns the specified master on or off.

m={Master Name} on/off (short form for “master”)

Some examples of hyperlinks appear below:

{KINEMAGE 3}
{Kin 2, View 4}
{kin 3, v=5, alloff, m={charges} on, m={Hphobics} on}
{view 5, master={mc} off}

9 Alternative spellings
Some of the keywords in kinemage files may take alternate forms, some of which are
historical artifacts and some of which are attempts to accomodate both American and
British spelling. The forms given above are the preferred ones; the alternatives listed
below may not be supported by all kinemage viewers.

@balllist @ball

[9] Alternative spellings 16

collapsable collapsible recessiveon

color= colour=

deadblack black

@dimensions @dimension

@dotlist @dot

@flat @flatland @xytranslation

gray grey

@hsvcolor @hsvcolour

L l D d (the unneccessary point flag: L for Line-to, D for Draw-to)

@labellist @label

@listcolordominant @listcolordom

nohighlight nohilite nohi

orange rust

P p M m (the point flag: P for Point, M for Move-to)

@ribbonlist @ribbon

@ringlist @ring

sea seagreen

sky skyblue

@spherelist @sphere

@subgroup @set

@trianglelist @triangle

U u (the point flag for Unpickable)

@vectorlist @vector

@whitebackground @whiteback @whitebkg

X x (the point flag)

yellowtint paleyellow

@zslab @zclip

17

Part II

Syntax
This part of the document describes the low-level syntax that is common to all kinemage
formats, regardless of how many additional functionalities (semantics) they incorpo-
rate. The descriptions are very precise, at the cost of being somewhat long and te-
dious. However, this level of detail is necessary for programmers who wish to interpret
kinemage files reliably, and may be helpful to authors as well. This level is expected to
be extremely stable and change very slowly.

The descriptions in the two parts of this document assume a similar division of labor
in the implementation of computer programs that process kinemages: the low-level
syntax (this part) is handled by a tokenizer, which can separate a stream of characters
into meaningful atomic units. The semantics and high-level syntax (the preceding part)
are handled by a parser, which is responsible for understanding, e.g., the relationships
among graphics objects and their implied hierarchical organization.

10 Characters in kinemage files
Kinemage files are plain text files encoded according to the ASCII standard5, which
defines 128 characters. Each character is stored in the lower 7 bits of a single byte. Only
ASCII characters between 32 and 126 inclusive, plus 9 (horizontal tab), 10 (newline),
12 (formfeed), and 13 (carriage return) are legal characters in a kinemage file (numbers
given are in decimal).

A kinemage tokenizer may check for and report illegal characters, but is not re-
quired to. If the tokenizer does find illegal characters, they should not cause a fatal
error, but should instead be treated as alphanumerics (see section 10.2).

10.1 Whitespace
Whitespace characters are the space (32), horizontal tab (9), newline (10), formfeed
(12), carriage return (13), and the comma (44). Commas are defined as whitespace to
simplify treatment of a sequence of numbers, which is often writen out with commas
as separators.

The kinemage format is whitespace insensitive: these characters carry no meaning
and may be discarded at the tokenizer level. Where whitespace is called for, one or
more whitespace characters may be used, and any sequence of continguous whites-
pace characters is treated as a single occurance of whitespace. However, there is one
important semantic attribute conveyed by whitespace: the newline and carriage return
characters impart the beginning-of-line (BOL) property to any token immediately fol-
lowing them. See section 11.1 for details.

When using whitespace, keep in mind that kinemage files should be human-readable
and human-editable. Line length should not exceed 80 characters, but superfluous line

5See http://www.asciitable.com/ for details.

[10.2] Alphanumerics 18

breaks should be avoided. Single spaces are the preferred form of whitespace within a
line. These suggestions are merely matters of style, and a kinemage tokenizer must not
rely on them being followed.

10.2 Alphanumerics
Alphanumeric characters are the uppercase letters A-Z, the lowercase letters a-z, and
the digits 0-9. Note that kinemage files are case sensitive. Kinemage tokenizers must
not convert or mangle the case of any tokens in a kinemage file, and tokens that differ
only by case must still be considered distinct from one another.

10.3 Punctuation
All legal characters that are neither classified as whitespace nor as alphanumerics are
regarded as punctuation. These characters have a variety of functions in the kinemage
format. The following characters already have well-defined function and syntax asso-
ciated with them:

@ () - = + { } “ ’ < . >

At the moment, no special significance has been attached to the following characters:

‘ ~ ! # $ % ^ & * _ [] \ | : ; / ?

However, a future version of the format may define meanings for them.

11 Tokens in kinemage files
Files in kinemage format can be thought of a sequences of tokens (meaningful), each
separated from the others by zero or more whitespace characters (meaningless). Tokens
are divided into two classes, quoted and unquoted. Quoted tokens have clear start and
end signals, so they can occur with no intervening whitespace and still be separable.
Unquoted tokens lack clear start and/or end signals. Thus, at least one whitespace
character is required between two unquoted tokens in order to separate them from one
another.

Theoretically, each token may be of any length, from one character (even zero
characters, for quoted tokens) up to the largest string that will fit in memory. In practice,
however, tokens should be fairly short; 20 characters or less is a reasonable guideline.
No token should exceed 256 characters in length, and more stringent restrictions on
length may be imposed on some tokens by the higher-level syntax.

The names given to token types below reflect their usual function in a kinemage
file, but they are not restricted to that function. For example, an identifier usually
names some object, but it can also enclose a command line, a file name, and so on.

[11.1] Beginning-of-line 19

11.1 Beginning-of-line
Beginning-of-line (BOL) is a property of certain tokens that may influence their inter-
pretation by the parser. For instance, for a token to be recognized as a keyword (see
section 11.3.1), it must occur at the beginning of a line. A token is considered BOL
under any of the following conditions:

• The first character of the token is the first character in the file

• The first character of the token is immediately preceded by a newline

• The first character of the token is immediately preceded by a carriage return

11.2 Quoted tokens
Quoted tokens all have explicit markers for the beginning and end of the token. This
simplifies the parsing of these tokens, and enables one to classify the type of token
present after parsing the first character of it. However, care must be taken to close every
token that is opened. To aid authors in discovering such errors in their kinemages, it is
recommended that kinemage tokenizers report a non-fatal error when they encounter
the end of the file before closing an open quoted token.

11.2.1 Identifiers

Identifiers are strings quoted by curly braces, like this:

{an identifier}

An identifier token begins when an opening curly brace is encountered outside of any
other quoted token (but possibly “inside”, i.e., immediately following, an unquoted
token). It terminates as soon as the number of closing curly braces encountered in the
course of parsing this token equals the number of opening curly braces encountered.
That is, curly braces may be nested within an identifier, but only as long as they are
balanced. Otherwise, an identifier may contain any legal character for a kinemage file.

11.2.2 Comments

Comments are strings quoted by angle brackets, like this:

<a comment>

A comment token begins when an opening angle bracket is encountered outside of any
other quoted token (but possibly “inside”, i.e., immediately following, an unquoted
token). It terminates as soon as the number of closing angle brackets encountered in the
course of parsing this token equals the number of opening angle brackets encountered.
That is, angle brackets may be nested within a comment, but only as long as they are
balanced. Otherwise, a comment may contain any legal character for a kinemage file.

[11.3] Unquoted tokens 20

11.2.3 Aspects

Aspects are strings quoted by parentheses, like this:

(an aspect)

An aspect token begins when an opening parenthesis is encountered outside of any
other quoted token (but possibly “inside”, i.e., immediately following, an unquoted to-
ken). It terminates as soon as the number of closing parentheses encountered in the
course of parsing this token equals the number of opening parentheses encountered.
That is, parentheses may be nested within an aspect, but only as long as they are bal-
anced. Otherwise, an aspect may contain any legal character for a kinemage file.

11.2.4 Single quoted strings (pointmasters)

Pointmasters are represented as strings deliminted by single quote marks, like this:

’abc’

A single quoted token begins when a single quote mark is encountered outside of any
other quoted token (but possibly “inside”, i.e., immediately following, an unquoted to-
ken). It terminates as soon another single quote mark is encountered. That is, single
quoted strings may not contain embedded single quotes, and no mechanism exists to es-
cape this limitation. Otherwise, a single quoted string may contain any legal character
for a kinemage file.

11.2.5 Double quoted strings

Double quoted strings are defined analogously to single quoted strings, like this:

“abc”

A double quoted token begins when a double quote mark is encountered outside of
any other quoted token (but possibly “inside”, i.e., immediately following, an unquoted
token). It terminates as soon another double quote mark is encountered. That is, double
quoted strings may not contain embedded double quotes, and no mechanism exists
to escape this limitation. Otherwise, a double quoted string may contain any legal
character for a kinemage file.

At the moment, no function has been ascribed to double quoted strings in kinemage
files. Until a meaning is defined, parsers should ignore them.

11.3 Unquoted tokens
Unquoted tokens are somewhat harder to parse than quoted tokens, because their start
and end signals are less obvious. Also, the entire token may need to be parsed before
one is able to decide what kind of token it is. However, rules for parsing these tokens
are well-defined. An unquoted token may begin in any of the following positions:

[11.3] Unquoted tokens 21

• At the beginning of the file

• Immediately following the end of a quoted token

• Following one or more whitespace characters, outside of all quoted tokens

An unquoted token may begin with any non-whitespace character that does not begin
a quoted token. An unquoted token is then terminated by the first of these encountered
after the initiating character:

• The end of the file

• Any whitespace character

• The equals sign (ASCII 61)

• Any character that begins a quoted token: { < (’ “

While the initiating character is considered part of the token, the terminating character
may or may not be considered part of the token. Whitespace will be discarded, and
quoted token initiators will be part of the next (quoted) token. The equals sign will
be kept as part of this token. Note that this means tokens ending in the equals sign
(called “Properties”; see section 11.3.2) are effectively half-quoted: there need not be
whitespace after the equals sign to separate this token from the next (unquoted) token.

The following sections present rules for categorizing unquoted tokens. The rules
are in order of precedence—that is, a token must be classified according to the first
rule it matches from this list. This resolves the ambiguity that would arise if, e.g., a
token began with an “at” sign (like a keyword) and ended with an equals sign (like a
property).

11.3.1 Keywords

Keywords define the major sections of a kinemage. Each keyword begins with the “at”
sign (64). For example, all of the following are keywords:

@kinemage @master @vectorlist

Furthermore, in order to be recognized as a keyword, the “at” sign must occur at the
beginning-of-line (BOL; see section 11.1). In addition to enforcing good style, this
streamlines the processing of plain text segments (see section 11.4).

11.3.2 Properties

Properties are generally used for labeling the meaning of the next token in the file.
Each property ends with an equals sign (61). The following are all properties:

color= master= radius=

[11.3] Unquoted tokens 22

Note that, by definition of an unquoted token, whitespace is forbidden before the equal
sign. Although some old kinemages may allow this syntax, it requires the tokenizer to
read ahead through an arbitrary amount of whitespace following every unquoted token
in order to determine if it is a property or not. This behavior could be undesirable if
the kinemage contains sections of plain text (see section 11.4) or is embedded within
some other data format.

As described above, there may be whitespace after the equals sign, but it is not
required, even if the next token is unquoted. This semi-quoted (quoted at the end, but
not the beginning) behavior of property tokens is a historical feature of the kinemage
format that has been retained for backward compatibility. The preferred format for new
kinemages is to have a space following the equals sign.

There are no low-level syntactic restrictions on the positioning of properties; how-
ever, at a higher level, syntax generally requires that each property be followed by a
non-keyword, non-property token. For example:

color= red
width= 7
master={backbone}
radius=2.5

11.3.3 Integers

Integers are exactly that: text representations of integer numbers. Legal integers are
either the single digit zero, or a non-zero digit followed by zero or more additional
digits and optionally preceded by a plus or minus sign. The following are legal integers:

0 +1 7 -365 2020

The following are not legal integers:

-0 007 5+2

Tokens that are not legal integers but consist only of digits 0-9 and the plus and minus
signs (e.g., the above) may be interpretted as integers or as literals on a case-by-case
basis, at the discretion of the tokenizer. It is recommended that a warning be issued if
such a token is encountered.

11.3.4 Numbers

Numbers are a superset of the integers: text representations of real numbers in decimal
or scientific notation. Legal numbers follow the pattern6 below:

number ::= integer fraction? exponent?
fraction ::= ’.’ digit+
exponent ::= (’e’ | ’E’) integer

6See http://www.garshol.priv.no/download/text/bnf.html for an introduction to Extended
Backus-Naur Form.

[11.4] Plain text blocks 23

Basically, there must be something before the decimal point, even if it’s a zero; there
must be something after the decimal point, if there is one; and the exponential part
(if present) may be indicated with either a capital or a lowercase E. The following are
legal numbers:

-0.42 1e5 3.14 6.022E+23

Tokens that are not legal numbers but consist only of digits 0-9, the letters e and E,
the decimal point, and the plus and minus signs may be interpretted as numbers or as
literals on a case-by-case basis, at the discretion of the tokenizer. It is recommended
that a warning be issued if such a token is encountered.

11.3.5 Literals

Legal unquoted tokens that cannot be otherwise classified are lumped together as liter-
als. Note that, by the definitions provided for unquoted tokens, a literal may begin with
a numeric digit. This is in contrast to many programming languages. Those defining
new semantics for kinemages are strongly advised against defining literals that are not
numbers but use only characters allowed in numbers; the interpretation of such tokens
is poorly defined (see section 11.3.4). In fact, it is recommended that literals contain
only alphanumeric characters and that they start with a letter rather than a number. The
following are all legal literals:

animate 2animate red blue green big_long_literal

11.4 Plain text blocks
In addition to the ordinary, tokenizable parts of a kinemage file, sections of text data
that do not conform to the rules for tokens may be embedded. This data cannot be
processed as usual by the tokenizer for two reasons:

1. The data is in an unknown format, and whitespace may be significant.

2. The data may “open” a quoted string but never close it, thereby hiding the re-
maining content of the file.

An example of this is the plain text write-ups that follow the @text keyword; how-
ever, future kinemages could conceivably contain embedded HTML, base-64 encoded
binary resources, etc. At the moment, there is no purely syntactic means for identify-
ing such regions. However, upon the request of the parser, the tokenizer must be able
to deliver the unaltered text content of the file from the current position until reaching
a kinemage-format keyword (i.e., a new line or carriage return followed by an “at”
symbol).

