Building NeXus with Visual Studio 2008

Pedro Vicente (pedro.vicente@space-research.org)

Solution Explorer - nexus

el

= | @38
[Solution 'nexus' (4 projects)

: applications

- 5 nexus

-

| = header

.....] mx_stptok.h
.....] nxdataset.h
.....] nxio.h

.....] nxstack.h
= include

..... ¢ napiu.c
..... ¢ nxdataset.c

..... cﬂ nxio.c

----- c+] nmustack.c
..... & maoeml.c

----- ¢ stptok.c
= Windows_extra

S = include

i |0 nxconfig.h

4 i F test

||:_T;| Solution Ex... |Z'5 Class View |52| Property ...

1 Introduction

Open the file /windows/nexus.sIn with Visual Studio.

2 Layout

The solution layout is shown in the figure in the left,
a Visual Studio solution with 4 folders: applications,
nexus, bindings and test.

2.1 nexus folder

The folder nexus contains a project named nexus
that contains the C source code for the NeXus API.
The folder contains 4 subfolders named ‘header’ ,
the C header files currently located in /src of the
NeXus distribution, ‘include’ , the C header files
currently located in /include of the NeXus
distribution, ‘src’ , the C source files currently
located in /src of the NeXus distribution and
‘Windows_extra/include’ that mimics a folder with

the same name in the NeXus distribution.

The ‘Windows_extra/include’ folder contains the
‘nxconfig.h’ file, that contains several Visual Studio
system dependent macros for use in the NeXus API.
Unlike the UNIX systems, this file is not generated
automatically by the configure process in those
systems.

Page 10of 8

' Solution Explorer - nexusCPP =

2.2 bindings folder

=R L . .
[Solution 'nexus' (4 projects) The bindings folder contains a project named
B 4 applications pre) ‘nexusCPP’ that contains the C++ binding of the

: bindings NeXus library.

e 2] nexusCPP)
EI [£= Header Files

- |n] MeXusException.hpp
..... |n] MeXusFilehpp
- [n] MeXusStream.hpp
EI [Source Files
----- ¢+ NeXusException.cpp
..... ¢+ MeXusFile.cpp
..... €+ MeXusStream.cpp

Page 2 of 8

Solution Explorer - napi_test @

‘= 2] | &

J Solution 'ProjectMeXus’ (25 projects)
|_:_| i applications

- 28 nxtranslate

33 nxconvert

35 nxdir

- =4 nxingest

A nxsummary

- 58 nxvalidate

- 35 nxbrowse

: libs

: nexus

& test

. 35 leak_testl

- 124 leak_test?

- 124 leak_test3

- 24 test_nxunlimited

gz napitest

&5l Solution ... [Class View |= Property ...
| & |_3 |~=| =TT

Solution Explorer - libs @

=
_; Solution 'ProjectMeXus' (25 projects)

[i applications

- 124 hdf5

: 35 welr

- 124 zlib

- 24 lib

- 124 htinit

- 24 toolslib

- 124 mxmil

- 24 libxml2-2.7.6
- 124 hdf

[i nexus

[i % test

SRR

SR RCE

B

gl Solution ... (32 Class View | = Property ...
= = JPropet

2.3 applications folder

The figure on the left contains the projects regarding
the applications and test folders. For applications
the projects are nxtranslate, nxconvert, nxdir,
nxingest, nxsummary, nxvalidate and nxbrowse.

2.4 test folder

For the test folder, the projects are leak_testl,
leak_test2, leak test3, test nxunlimited and
napi_test.

These names duplicate the programs currently built
for the UNIX systems.

3 Add additional libraries

A feature of the Visual Studio IDE is that it allows
inserting and deleting projects by means of a
Graphical User Interface. Thus, it is possible to
include in the solution projects for the base libraries
that NeXus depends, such as HDF5 (and its
dependencies SZLIB and ZLIB), HDF4 (and its
dependency JPEG), and the XML libraries. This
allows advanced developers to have direct access to
the code of the underlying libraries, for debugging
purposes, for example. Since these external libraries
are not distributed with NeXus, these projects are
not proposed to be included in the Visual Studio
Solution, but can be made available for interested
developers.

Page 3 0of 8

4 Building NeXus with the base libraries

To actually store NeXus files on physical media, different low-level file formats are available, namely
HDF4, HDF5, and XML. The NeXus library may be configured to support all of them, or any nonempty
subset. Applications that create NeXus files need to decide (or let the user decide) in which low-level
format data shall be stored. This section shows how to modify several Visual Studio project settings to
build the NeXus APl and applications with the underlying libraries HDF5, HDF4 or MXML.

To compile and link a NeXus application with any underlying library, two actions must be done:
e add a preprocessor definition for the underlying library for the NeXus library Visual Studio project

¢ add the underlying library name and path for each application Visual Studio project

4.1 NeXus library Visual Studio project settings

The preprocessor definitions are entered in the C/C++, Preprocessor, Preprocessor Definitions Property
Page, shown below

Figure 4.1: the C/C++, Preprocessor, Preprocessor Definitions

e

Configuration: ’AII Configurations v] Blatform: ’Active[WinEE] V] ’ Configuration Manager...]

[» Comrmon Properties Preprocessor Definitions HDF5:H5_USE_16_APT: CRT_SECURE_NO _WARNINGS;
a4 Configuration Properties Ignore Standard Include Path Mo
General Generate Preprocessed File Mo

Debugging Keep Comments Mo
a C/C++

General

Optimization
i_.lg’.flj:_processor [
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
Command Line
[» Librarian
[XML Document Generator
» Browse Information
[> Build Events
[Custom Build Step

Preprocessor Definitions
Specifies one or more preprocessor defines. (/D[macro])

a4 | m |

[oK] ’ Cancel Apply

Page 4 of 8

The library path of the underlying library must also be entered. This is done in the C/C++, General,
Additional Include Directories of the nexus project file, shown below.

Figure 4.2: the C/C++, General, Additional Include Directories

DT .
Configuration: ’.Al.l Configurations v] Blatform: ’Active[WiniZl V] ’ Configuration Manager...]
[» Comrmon Properties Additional Include Directories “AAG G hd - LB s G Ninclud e A \Windows_ex
4 Cenfiguration Properties Resclve #using References
General Debug Information Format
Debugging Suppress Startup Banner Yes (fnologo)
4 C/C++ Warning Level Level 3 (/W3)
| General| Detect 64-bit Portability Issues No
P Treat Warnings As Errors Mo
e . Use UNICODE Response Files Yes
Code Generation
Language
Precompiled Headers
Output Files
Browse Information
Advanced
Command Line
[» Librarian
[» ¥ML Document Generator
[» Browse Information
[> Build Events
e Additional Include Directories
Specifies one or more directories to add to the include path; use semi-colon delimited list if more
7 | m | » than one. (/I[path])
[Ok] ’ Cancel Apply

4.2 Applications project settings

To library name to be linked is entered in the Linker Input Property Page (Figure 4.3), in the Additional
Dependencies field. Either the literal library name or a Windows system environment variable! with the

! To define an environment variable in Windows 7, click Start, right-click Computer, and select Properties. Select Advanced
System Settings. Then, click the Environment Variables button.

Page 50of 8

library name or name with full path can be used. Figure 4.3 shows an example of NXBrowse linked with
the HDF5 library: The following environment variables were defined, for the HDF5, ZLIB and SZIP
libraries?, LIB_HDF5, LIB_ZLIB, LIB_SZIP with the names of those libraries. Then, in the NeXus application
Linker Input Property Page, in the Additional Dependencies field, the following must be entered

$(LIB_HDF5) $(LIB_ZLIB) $(LIB_SZIP)

Figure 4.3: Linker Input Property Page and additional libraries in Additional Dependencies

arreperyror N e
Configuration: ’Acti.'.rel[Debug] v] Platform: ’Acti'.reﬂ‘ﬁnﬂ] '] ’ Configuration Manager...]
[Common Properties Additional Dependencies ws2_32.lib $(LIB_HDF5) $({LIE_ZLIB) %{LIB_SZIP)
a4 Configuration Properties Ignore All Default Libraries Mo
General Ignare Specific Library
Debugging Module Definition File

b CfCes Add Module to Assembly
4 Linker Embed Managed Resource File

%ﬁl Force Symbol References

Input| Delay Loaded DLLs

MEHI'FESF e Assembly Link Rescurce

Debugging

Systemn

Optimization

Embedded IDL

Advanced

Command Line
[Manifest Tool
[» XML Document Generator
[» Browse Information
[» Build Events
[» Custom Build Step Additional Dependencies

Specifies additional iterns to add to the link line (ex: kernel32.lib); configuration specific.
1| 0 | »

[Ok] ’ Cancel Apply

An additional step is to add the library path to be linked for each application. This is done in the Linker
General, Additional Library Directories field, shown in Figure 4.4. This step can be omitted if the
environment variable points to the full library path.

’The HDF5 library needs the SZIP and ZLIB libraries

Page 6 of 8

Figure 4.4: Linker General, Additional Library Directories

Configuration: ’Debug.

v | Platform: | Active(Win32)

v] ’ Configuration Manager...]

Common Properties

Output File

S(OutDir\S(ProjectMame).exe

KML Document Generator
Browse Information
Build Events

Configuration Properties Show Progress Mot Set
General Version
Debugging Enable Incremental Linking Yes (/INCREMENTAL)
C/Ce+ Suppress Startup Banner Yes (fNOLOGO)
Linker Ignore Import Library Mo
General Register Output Mo
IHPUF) Per-user Redirection Mo
A T -\ AbdS5-L8\prof hdf5\Debugs \\A\ AL
Debugging Link Library Dependencies Yes
Systern :
i azaten Use Library Dependency Ir.1puts Mo
T Use UMNICODE Response Files Yes
Advanced
Command Line
Manifest Tool

Customn Build Step

4 |]

Additional Library Directories
Specifies one or more additional paths to search for libraries; configuration specific; use
semi-colon delimited list if more than one,

(/UBPATH:[dir])

| ok

1’ Cancel] Apply

Both the HDF5 and HDF4 base libraries are distributed from the HDF Group (http://www.hdfgroup.org/).
These instructions assume building using the HDF Group’s distributed Visual Studio libraries.

4.3 Building NeXus with HDF5

The following table shows the preprocessor definitions and libraries needed to compile with the HDF5
library. The table also shows example names for environment variables for each underlying library. HDF5

depends also on external libraries (SZIP, ZLIB).

Preprocessor symbols Libraries needed Environment variables
HDF5, H5_USE_16_API hdf5 LIB_HDF5

szip LIB_SZIP

zlib LIB_ZLIB

Page 7 of 8

4.4 Building NeXus with HDF4

The following table shows the preprocessor definition and libraries needed to compile with the HDF4
library. The table also shows example names for environment variables for each underlying library. HDF4
depends also on external libraries (SZIP, ZLIB, JPEG) and one library included in the HDF4 distribution,
XDR. The HDF4 Windows distribution actually generates 2 libraries: the single file HDF library, and the
multi file HDF library, shown here as the LIB_HDF4 and LIB_MFHDF4 environment variable names.

Preprocessor symbols | Libraries needed Environment variables
HDF4 hdf4 LIB_MFHDF4, LIB_HDF4
xdr LIB_XDR
szip LIB_SZIP
zlib LIB_ZLIB
jpeg LIB_JPEG

4.5 Building NeXus with MXML

The following table shows the preprocessor definition and library needed to compile with the Mini-XML
library (http://www.minixml.org/). The table also shows an example name to use in the definition of an
environment variable.

Preprocessor symbols | Libraries needed Environment variables

MXML mxml LIB_MXML

Page 8 of 8

