
Victor: a SPARK VC Translator and Prover Driver

User Manual for release 0.9.1

and subsequent experimental modifications

Paul Jackson
pbj@inf.ed.ac.uk

20th July 2011

Contents

1 Supported provers and prover languages 2
1.1 Simplify language . 3
1.2 SMT-LIB language . 3
1.3 Alt-Ergo . 3
1.4 CVC3 . 3
1.5 Simplify . 4
1.6 Yices . 4
1.7 Z3 . 5

2 Installation and Testing 5

3 Operation 7
3.1 Terminology . 7
3.2 Basic operation . 7
3.3 Input and output files . 8

3.3.1 Unit listing input file . 8
3.3.2 VCT output file . 9
3.3.3 VSM output file . 9
3.3.4 VLG output file . 10

3.4 Invocation of Victor . 10
3.5 Examples . 11
3.6 Performance tips . 11

1

4 Command line options 12
4.1 Input options . 12
4.2 Translation options . 14
4.3 Prover and prover interface selection . 14
4.4 Prover driving options . 15
4.5 Output options . 16

4.5.1 Screen output options . 16
4.5.2 General report file options . 16
4.5.3 VCT file options . 16
4.5.4 Log file options . 17

4.6 Debugging options . 18
4.7 CVC3 options . 18
4.8 Simplify options . 18
4.9 Yices options . 19
4.10 Z3 options . 19

5 Translation 19
5.1 Standard Form translation . 20
5.2 Type checking . 21
5.3 Enumerated type abstraction . 21
5.4 Early array and record abstraction . 21
5.5 Separation of formulas and terms . 21
5.6 Type refinement . 22
5.7 Late array and record abstraction . 24
5.8 Bit abstraction . 25
5.9 Arithmetic simplification . 25
5.10 Arithmetic abstraction . 26
5.11 Final translation steps . 27

6 CSV utilities 28
6.1 Filter CSV records . 28
6.2 Merge two CSV files . 28
6.3 Project out fields of CSV records . 29

7 Future developments 29

1 Supported provers and prover languages

Victor has API interfaces to the Cvc3 and Yices provers, and can drive any prover that
accepts Simplify or smt-lib format input files.

2

1.1 Simplify language

The Simplify language is supported by the Simplify and Z3 provers.

1.2 SMT-LIB language

The smt-lib initiative (http://www.smtlib.org) defines a standard language for format-
ting input to Smt solvers and collects benchmarks in this format.

Provers taking smt-lib input must support at least one of the smt-lib sub-logics

• auflia: quantifier formulas involving arrays, uninterpreted functions, linear integer
arithmetic.

• auflira: quantifier formulas involving arrays, uninterpreted functions, linear integer
and linear real arithmetic.

• aufnira: quantifier formulas involving arrays, uninterpreted functions, non-linear in-
teger and non-linear real arithmetic.

• ufnia: Non-linear integer arithmetic with uninterpreted sort, function, and predicate
symbols.

Such provers include Alt-Ergo, Cvc3, Yices and Z3. Victor currently makes no use of the
support for arrays or the reals.

1.3 Alt-Ergo

Alt-Ergo is an open-source Smt solver from LRI (Laboratoire de Recherche en Informatique)
at Université Paris-Sud. It is available from http://alt-ergo.lri.fr/.

Victor has been tested most recently with the V0.92.2 release using Alt-Ergo’s smt-lib
file-level interface.

If the standalone Alt-Ergo executable is downloaded rather than built from the Alt-Ergo
source distribution, it is also necessary to copy the file smt prelude.mlw from the source
distribution to the run/ directory.

1.4 CVC3

Cvc3 is an open-source Smt solver jointly developed at New York University and the Uni-
versity of Iowa. It is available from http://www.cs.nyu.edu/acsys/cvc3/.

3

http://www.smtlib.org
http://alt-ergo.lri.fr/
http://www.cs.nyu.edu/acsys/cvc3/

Victor can link to a Cvc3 library and can then drive Cvc3 via its API. Alternatively Victor
can invoke a Cvc3 stand-alone executable on smt-lib format files.

Victor has been tested with the latest release, V2.2, dating from November 2009. Cvc3 is
significantly slower than Yices or Z3 (maybe 5-10×), especially when VCs are unprovable.
It has some basic support for non-linear arithmetic.

When driven via its API, this version of Cvc3 throws exceptions and has some segmentation
faults on a few of the Spark VCs from the tokeneer set, The exceptions are caught and
reported by Victor, but the segmentation faults cause Victor to halt. To enable Victor runs
in the presence of these faulting problems, it is possible to tell Victor to ignore trying to run
Cvc3 on certain VCs.

1.5 Simplify

Simplify is a legacy prover, used most notably in the ESC/Java tool.

The Modula-3 sources and some documentation are available from HP labs. Visit http:

//www.hpl.hp.com/downloads/crl/jtk/index.html and follow the “Download Simplify
here” link.

Executables for Linux and other platforms can be pulled out of the ESC/Java2 distribu-
tion: visit http://secure.ucd.ie/products/opensource/ESCJava2/. In October 2007,
the executables for V1.5.4 were found in a file Simplify-1.5.5-13-06-07-binary.zip.

Simplify has good performance, but is unsound and sometimes crashes because it uses fixed-
precision integer arithmetic.

Victor interfaces to Simplify using temporary files and by invoking the Simplify executable
in a sub-process. Unlike the case with Cvc3, Victor can tolerate Simplify crashing. Victor
provides notifications of Simplify crashes in its output files.

1.6 Yices

Yices is a state-of-the-art Smt solver available from Sri at http://yices.csl.sri.com/.

Victor links with a Yices library provided with the Yices distribution. Victor has been tested
with the latest public release, V1.0.24. This version, bug fixes apart, dates from summer
2007 and essentially is the version that lead the field in the 2007 Smt competition.

Yices is fussy about VCs containing non-linear arithmetic expressions. Victor currently
just has Yices ignore any hypotheses or conclusions containing such expressions, and, not
infrequently, VCs are provable despite these ignored VC clauses.

4

http://www.hpl.hp.com/downloads/crl/jtk/index.html
http://www.hpl.hp.com/downloads/crl/jtk/index.html
http://secure.ucd.ie/products/opensource/ESCJava2/
http://yices.csl.sri.com/

Yices will accept universally-quantified hypotheses with non-linear arithmetic expressions,
and sometimes can make use of linear instantiations of these. Unfortunately, the current
behaviour on finding a non-linear instantiation is abandon the proof attempt rather than
simply ignore the instantiation.

No crashes have been observed with recent versions of Yices. However, on a few VCs (not in
the test sets provided with the distribution), Yices just keeps going on and on. No mechanism
for timing out on such cases has yet been implemented, the only way to deal with them is
to request that Victor ignore them.

Victor can also drive Yices using smt-lib format files.

1.7 Z3

Z3 is a state-of-the-art Smt solver developed at Microsoft. See http://research.microsoft.
com/en-us/um/redmond/projects/z3/.

Victor has been tested most recently with the Linux version of release 2.13. No problems
have been observed with this version.

Z3 has good performance and better VC coverage than other solvers tried. In particular, it
has the best support for non-linear arithmetic.

Victor interfaces to Z3 using temporary files and by invoking the Z3 executable in a sub-
process. The temporary files can be in either smt-lib or Simplify format.

2 Installation and Testing

Victor is written in C++ and currently only runs on Linux. The current distribution includes
some preliminary code to allow it to compile and run on Windows. However, this code has
not yet been fully tested.

At Edinburgh, Victor is curently compiled and run on a Red Hat Fedora 13 machine. It
makes use the following tools:

• make V3.81

• gcc/g++ V4.4.4

• bison V2.4.1

• flex V2.5.35

The main external library it uses is

5

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

• gmp V4.3.1

Its precise dependencies on these versions are largely unknown. One observation is that some
tweaks to the bison code in parser.yy were necessary when shifting from bison V2.3 to
bison V2.4. Comments in parser.yy indicate what needs to be changed for compilation
with V2.3

By default, the gmp library is dynamically linked in. If running a single executable on several
different Linux platforms, this can cause problems and it might be desirable to use static
linking instead. To achieve this, use STATIC GMP=true on the make command line when
building Victor.

To install:

1. Untar the distribution. E.g.

tar xzf vct-0.9.0.tgz

This should generate a top level directory vct-0.9.0 including subdirectories src, bin,
run, vc and doc. The doc directory includes a copy of this manual. Other directories
are described below.

2. Configure Victor for each of the provers you wish to use it with.

Cvc3: To enable the API driver, uncomment the definition of variable CVC3DIR in file
src/Makefile and edit its value to be that of your Cvc3 installation.

To use the smt-lib format file interface, ensure that an executable cvc3 is on
your current path.

Simplify: Ensure an executable called simplify is on your current path.

Yices: To enable the API driver, uncomment the definition of variable YICESDIR in
file src/Makefile, and edit its value to be that of your Yices installation.

To use the smt-lib format file interface, ensure that an executable yices is on
your current path.

Z3: Ensure an executable called z3 is on your current path.

Alt-Ergo: Ensure an executable called alt-ergo is on your current path.

Alternate names, and optional paths can be specified for each executable at the top of
the Makefile in the run directory.

Victor can be run without driving any prover. This is useful for testing if Victor’s
parser can handle certain VCs and for gathering information on VCs. This mode
can be used for compiling reports on the coverage obtained with the Simplifier prover
provided with Praxis’s Spark toolkit.

3. Build a Victor executable by cding to the src directory and typing make. This does a
variety of things, including

6

(a) Creating .d files recording make rules that capture dependencies between source
files.

(b) Running the bison parser generator and the flex lexer generator.

(c) Compiling various .o files.

(d) Linking the .o files together, along with prover libraries and the gmp library, and
installing the resulting executable named vct in the bin directory.

For convenience, a sub-directory build contains copies of files created during a build
of Victor where it was configured for running with the Simplify and Z3 provers. For
example, if you do not have the correct version of bison, you could copy over the
bison output files to the src directory.

4. Add the vct/bin directory to your PATH.

5. Build utility tools for analysing the vct and vlg comma-separated-value output files
created by Victor. Enter make csvutils. This causes the executables csvproj,
csvfilt, csvmerge and csvisect to be added to the bin directory.

6. Try running Victor on the example VCs provided with the distribution. Check the
output files match the provided output files. See Section 3.5 for details.

3 Operation

3.1 Terminology

We refer to Spark VCs as goals and use the term goal slice to refer to a proof obligation
build from a VC by considering just one of the goal’s conclusions and ignoring the others.

A unit name is the hierarchical name of a program unit. The unit name with a .fdl, .rls,
.vcg or .siv suffix gives a pathname for the corresponding VC file relative to the root
directory of all the VC files for a Spark program.

3.2 Basic operation

The basic operation of Victor is to

1. Read in a list of names of Spark program units.

2. Read in the VCs described in the .fdl, .rls, .vcg file triples output by the Spark
Examiner for the named program units.1

1 Optionally it can read in the simplified .siv files output by the Spark Simplifier instead of the .vcg
files.

7

3. Invoke a prover on each goal or goal slice.

4. Output .vct, .vsm and .vlg report files.

3.3 Input and output files

The Victor-specific input and output files are as follows.

3.3.1 Unit listing input file

Typically Victor is run on many program units at once. An input unit listing .lis file is
used to indicate the units it should consider. The grammar for each line in a unit listing file
is given by

line ::= unitname {option}

option ::= [tag?]val

val ::= goal
| goal.concl
| filename.fdl
| filename.rul
| filename.rlu

where square braces ([]) enclose optional non-terminals, curly braces ({}) enclose non-
terminals repeated 0 or more times, the terminals unitname, tag and filename are alphanu-
meric strings, and the terminals goal and concl are natural numbers. The meaning of the
components of a line are as follows.

• unitname is the hierarchical name of a unit (Spark subprogram).

• tag tags an option. A tagged option is only active if the tag is also supplied as one of
the values of the -active-unit-tags Victor command-line option. Untagged options
are always active.

• goal and goal.concl select particular goals and goal slices in the unit. The Victor
command-line options -include-selected-goals and -exclude-selected-goals con-
trol how Victor treats these selected goals and goal slices.

• filename.rul and filename.rlu are auxiliary rules files to load

• filename.fdl is an auxiliary declarations file. For example, this can declare constants
and functions introduced in an auxiliary rules file.

8

Comment lines are allowed: these are indicated by a # character in the first column. Also
blank lines are allowed.

One way to prepare a unit listing file is to run the command

find . -name ’*.fdl’ | sed -r ’s/\.\/|\.fdl//g’ > units.lis

in the root directory of a set of VC files.

3.3.2 VCT output file

The vct file includes one line for each goal or goal slice. The fields of each line are:

1. Path to unit. This describes the containing packages

2. Unit name, without a prefix for the containing packages.

3. Unit kind. One of procedure, function or task type.

4. Source of path in subprogram for VC

5. Destination of path for VC, or VC kind if not path related

6. VC goal number

7. Conclusion (goal slice) number

8. Status (one of true, unproven, error)

9. Proof time (in sec)

10. Brief remarks about goal and solver interactions

11. Operator kinds occurring in hypotheses

12. Operator kinds occurring in conclusion

3.3.3 VSM output file

The run summary file has extension .vsm. It is a 1 line comma-separated-value file with the
fields

1. Report file name.

2. Number of ERROR messages in log file

9

3. Number of WARNING messages in log file

4. Total number of goal/goal slices processed.

5. Number of goal/goal slices with true status

6. Number of goal/goal slices with unproven status

7. Number of unproven goal/goal slices that involved a timeout.

8. Number of goal/goal slices with error status

9. Percent of goal/goal slices with true status

10. Percent of goal/goal slices with unproven status

11. Percent of unproven goal/goal slices that involved a timeout.

12. Percent of goal/goal slices with error status

13. Total execution time

A file vsm-file-header.txt provides a 1 line comma-separated list of headings for these
summary files.

Summary files can be concatenated together with a header file and then viewed in any
spreadsheet program.

3.3.4 VLG output file

The vlg log file includes

1. a record of the command line options passed to Victor,

2. various information, warning and error messages,

3. statistics on the run, including numbers of VCs proven and unproven, and time taken.

3.4 Invocation of Victor

The command line syntax for invoking Victor is

vct [options] [unitname]

10

The unitname argument is used to identify a single unit on which to run Victor.

To run Victor on multiple units, omit the unitname argument and use instead the units

option to specify a unit listing input file.

If both a unitname and a units option are provided, the units option is ignored.

Victor takes numerous options, many of which are currently necessary. See the next section
for a description of a Makefile that provides standard option sets.

3.5 Examples

The vc directory has subdirectories for some example sets of VCs.

See the file vc/README.txt for further information on these sets.

The run directory provides a Makefile with rules for running Victor on the VC sets in the
vc directory. These rules use Make patterns in their targets, and can easily also be used
for running Victor on users’ own VC sets. The rules set appropriate Victor command-line
options and so allow starting Victor users to ignore having to figure these out for themselves.
See run/Makefile for details.

Reference report files obtained from running make on some of these targets are included in
directory run/out-ref. Unix diff can be used to check that newly-generated report files
are the same as the reference files. If the command line option -gstime is used to include
times of prover runs in report files, it will be necessary to use the csvproj utility to remove
the field for these times in order to get files that are expected to be identical.

3.6 Performance tips

1. When Smt solvers cannot prove a goal, they often keep trying almost indefinitely rather
than halting, so it is good to run them with some kind of time-out. When several VCs
cannot be proven, Victor’s total run-time can be dominated by the runs that go to
time-out. Setting a shorter time-out can therefore sometimes radically reduce Victor’s
run-time, often with little or no drop in number of goals proven.

2. Smt solver performance on goals they can prove is often dependent on the number
of quantified axioms. By default, Victor uses a number of quantified axioms from the
rules files divmod.rul and prelude.rul in the run/ directory. In some cases, not all
these axioms are necessary, and faster run-times are achievable with alternate rules
files that prune down these axiom sets.

11

4 Command line options

Options are specified with syntax -name or -name =value . Option values can be boolean
(true or false), natural numbers (e.g. 42) or strings. An option -name is interpreted the
same as An option -name =true. An unset boolean option is interpreted as -name =false.

If the same option is given multiple times with different values, the usual behaviour is that
the last value is taken. Occasionally all multiple values are used. These cases are always
explicitly pointed out below.

A later option -name=, -name=false, -name=none or -name=default Clears all earlier values
given for the option and makes it unset.

4.1 Input options

These options control where VCs are read from, provision of auxiliary declarations and rules,
and filtering of VCs before invoking the selected prover.

-units=unit-listing
Run on units named in unit-listing file.

-prefix=prefix
Use prefix as a common prefix for all unit names. prefix/unitname should give an
absolute or relative pathname for the VC file set of a program unit. Default is that no
prefix is used.

-decls=declfile
For every program unit, read auxiliary .fdl declarations file named in declfile. Multiple
files can be specified using multiple -decls options.

-read-all-decl-files-in-dir

For each program unit with full name dirs/dir/unitname, read in all FDL declaration
files in directory dirs/dir/ rather than just the FDL declaration file dirs/dir/unitname.fdl.
This option is useful in conjunction with -read-directory-rlu-files and -read-unit-rlu-files

when the user-defined rules files for a unit (see options -read-directory-rlu-files

and -read-unit-rlu-files) refer to identifiers that are not declared in dirs/dir/unitname.fdl.
An alternative option is -delete-rules-with-undeclared-ids.

-read-directory-rlu-files

For each program unit with full name dirs/dir/unitname, read in the user-defined rules
file dirs/dir/dir.rlu. The SPARK Simplifier reads in such rules files by default.

-read-unit-rlu-files

For each program unit with full name dirs/dir/unitname, read in the user-defined rules
file dirs/dir/unitname.rlu. The SPARK Simplifier reads in such rules files by default.

12

-rules=rulesfile
For every program unit, read in auxiliary rules file named in rulesfile. Multiple files
can be specified using multiple -rules options.

-delete-rules-with-undeclared-ids

User-defined rules files can sometimes mention rules that involve functions and con-
stants that are not declared in the FDL file for a unit being processed. Normally
Victor abandons processing a unit when it encounters undeclared ids. With this
option, the rules involving the undeclared ids are deleted. An alternative option is
read-all-decl-files-in-dir.

-siv

Read in .siv simplified VC files output by the Simplifier rather than .vcg Examiner
VC files.

-goal=g
Only consider goal number g. This option is intended for use when Victor is run on a
single unit, when a unit-name argument and no units option is given.

-concl=c
Only consider conclusions (goal slices) numbered c. This option is intended for use
when Victor is run on a single unit.

-skip-concls

Do not pass conclusion formulae to the selected prover. This option is good for helping
to identify goals or goal slices true because of an inconsistency in the hypotheses or
rules.

-skip-hyps

Do not pass hypothesis formulae to the selected prover. This option is good for helping
to identify goals or goal slices true because of an inconsistency in the rules.

-from-unit=unit-name
Only drive to selected prover the units listed in the -units option starting with unit-
name. Default is to start with first.

-from-goal=g
In first unit to be passed to prover, start driving goals / goal slices to prover at goal g.

-to-unit=unit-name
Stop driving units to the selected prover after unit-name is encountered. Default is to
continue until the last listed unit.

-active-unit-tags=tags
Identify which tagged options (if any) in the unit listing file to make active. See Section
3.3.1 for more on this. Multiple tags should be separated by colons (:).

-include-selected-goals

When particular goals or goal slices are selected for a unit in the unit listing file, run
Victor on just those goals or goal slices.

13

-exclude-selected-goals

When particular goals or goal slices are selected for a unit in the unit listing file, do
not run Victor on those goals or goal slices.

4.2 Translation options

See Section 5 for a presentation of these options, since they make best sense in a discussion
of the overall translation process.

4.3 Prover and prover interface selection

-prover=prover
Select the prover to drive. Valid values of prover are:

• cvc3

• simplify

• yices

• z3

A value of none can also be specified. This is useful if one just wants to generate
prover input files.

-prover-command=prover-command
Use instead of the prover option to specify explicitly a shell-level command for invoking
the prover. This allows alternate provers or custom prover options to be specified.

Selecting neither this option or the prover option is equivalent to setting the value of
prover to none.

-interface-mode=mode
Select the prover interface mode. Valid values of mode are:

• api: Use prover API. Acceptable with cvc3 or yices value for prover.

• smtlib: Use smt-lib-format files and stand-alone prover executable. Acceptable
with cvc3, yices or z3 value for prover, and with prover-command option.

• simplify: Use Simplify-format files and stand-alone prover executable. Accept-
able with simplify or z3 value for prover, and with prover-command option.

• dummy: Use some default code that mostly does nothing. In this case, Victor
still parses the VC files, does a prover independent translation of the goals, and
generates vct and log output files. This is the default option.

14

4.4 Prover driving options

-fuse-concls

Pass one goal at a time to the selected prover. By default Victor passes one goal slice
at a time.

-working-dir=working-dir
Use working-dir as root of directory tree of files used for prover input and output. An
argument of ‘.’ is acceptable to indicate the current directory. Defaults to /tmp.

Unless one of the next three options is used, the same file names are used for every
every prover run and every Victor run.

-hier-working-files

Use distinct files for each prover invocation and arrange in a hierarchical tree under
working-dir.

-flat-working-files

Use distinct files for each prover invocation and arrange all as members of working-dir.

-unique-working-files

Within a given Victor run, use the same file names for each prover invocation, but, by
including hostname and process number in file names, make the names unique to the
Victor run. This option is useful if one wants to have simultaneous Victor runs.

-delete-working-files

Delete the files used for prover input and output after each prover invocation.

-ulimit-timeout=time
If using either of the file-level interface modes, use the Linux ulimit process limit facility
to time out prover invocations after time seconds. The time value should be a natural
number. The default is not to time out prover invocations.

-shell-timeout=time
If using either of the file-level interface modes, use the provided shell script timeout.sh
to time out prover invocations after time seconds. The time value can be an integer
or a fixed-point number (e.g. 0.1). The default is not to time out prover invocations.

Currently this option is not that robust and use of -ulimit-timeout is recommended
instead.

-logic=logic
If using the smt-lib interface mode, set the value of the :logic attribute in the
smt-lib-format files to logic. The default is AUFLIA.

-smtlib-hyps-as-assums

If using the smt-lib interface mode, insert each hypothesis into the smt-lib-format
file as the value of a distinct :assumption attribute.

15

-drive-goal-repeats=count
Repeat each prover invocation count times. This is used to increase precision of prover
runtime measurements when using an API interface.

-check-goal-repeats=count
Repeat each prover invocation count times. This is used to increase precision of prover
runtime measurements when using a file-level interface.

4.5 Output options

4.5.1 Screen output options

-utick

Print to standard output a * character at the start of processing each unit. If -longtick
also selected, print instead the unit name.

-gtick

Print to standard output a ; character at the start of processing each goal. If
-longtick also selected, print instead the goal number.

-ctick

Print to standard output a . character at the start of processing each conclusion of a
goal. If -longtick also selected, print also the conclusion number.

-longtick

See above.

-echo-final-stats

Print to standard output the final statistics that are included at the end of the report
file.

4.5.2 General report file options

-report=report-file
Use report-file as body of filenames for vct, vsm and vlg report files. Default is to
use report.

-report-dir=dir
Put report files in directory dir. If directory does not exist, it is created. Default is to
use current directory.

4.5.3 VCT file options

-count-trivial-goals

Write an entry to the vct file for each input goal of form *** true. In VCG files,

16

these are the goals proven by the Examiner. In SIV files, these are the goals proven
by the Examiner or the Simplifier. These entries have status true in field 8 and the
comment trivial goal in field 10.

Use this option along with option -fuse-concls to have the goal counts match those
from the POGS (Proof Obligation Summariser) tool.

-hkinds

Report list of hypothesis kinds in field 11 of vct file

-ckinds

Report list of concl kinds in field 12 of vct file

-gstime

Report time taken by prover to process a goal slice or goal in field 9 of vct file.

-gstime-inc-setup

Include setup time in gstime. This setup time is time to send declarations, rules,
hypotheses and conclusions to the prover before invoking prover itself.

It is appropriate to include this time when calling the prover via an API (Yicesand
Cvc3 cases) since the provers do incremental processing on receiving this information.
When the prover interface is via files, this setup time is the time to write an input file
for the prover, so it is not as appropriate to include it.

-csv-reports-include-goal-origins

Include information on goal origins in fields 4 and 5 of vct file. Default is not to
include this information.

-csv-reports-include-unit-kind

Include information on unit kind in fields 3 of vct file. Default is not to include this
information.

4.5.4 Log file options

-level=level
Report all messages at or above priority level. The levels and associated names are

6 error

5 warning

4 info

3 fine

2 finer

1 finest

The level value can either be a number or the associated name. The default level is
warning.

17

4.6 Debugging options

-scantrace

Write lexer debugging information to standard output

-parsertrace

Write parser debugging information to standard output

4.7 CVC3 options

Unless otherwise specified, these options are only relevant when invoking Cvc3 via its API.
The main options are as follows.

-counterex

Report counterexamples for false and unknown queries.

! I have not figured out yet how to direct Cvc3 to write counter-examples to
files. A work-around to view counter-examples is to run with this option and
the -cvc-inputlog option, and then run the standalone Cvc3 executable on the
generated Cvc3 input file.

-timeout=time
Set a timeout period in units of 0.1 seconds for runs of Cvc3, both via API and via
executable. Uses Cvc3’s internal support for timing out.

-cvc-loginput

Enable echoing of API calls for each Cvc3 run to a file. Use the -working-dir option
to set where the file is stored and the -hier-working-files and -flat-working-files

options to control whether and how distinct files are used for each run. Files have suf-
fix .cvc. If distinct files are not requested, all runs will be echoed to a file named
cvc3.cvc, each run overwriting the previous one. These files are saved in Cvc3’s
standard input language and can be used as input to a Cvc3 stand-alone executable.

See the file cvc-driver.cc for further available options. Not all of these have been tried
out yet.

4.8 Simplify options

No options are currently available.

18

4.9 Yices options

Unless otherwise specified, these options are only relevant when invoking Yices via its API.

-yices-loginput

Enable echoing of API calls for each Yices run to a file. Use the -working-dir option to
set where the file is stored and the -hier-working-files and -flat-working-files

options to control whether and how distinct files are used for each run. Files always
have suffix .yices. If distinct files are not requested, all runs will be echoed to the file
yices.yices, each run overwriting the previous one. These files are saved in Yices’s
standard input language and can be used as input to a Yices stand-alone executable.

! Victor lets Yices reject non-linear parts of formulae - see the warnings in Victor’s
log file. These formulae might have to be removed by hand for Yices to load these
input files properly.

-yices-logoutput

Set file for output of each run of Yices. Location of file and whether distinct files
generated for each run are specified in same way as with -yices-loginput. Suffix of
files is .ylog. If distinct files not requested, all runs written to yices.ylog.

-counterex

Enable reporting of counter-example models to output log file.

-timeout=time
Set a timeout period in seconds for runs of the Yices executable on smt-lib-format
input files. Uses Yices’s --timeout option.

4.10 Z3 options

No Z3 options are specifically supported by Victor. Z3 options can be specified by giving a
custom prover command with the prover-command option.

5 Translation

The description of the translation process here is rather brief and not self-contained. The
process is best understood by first having a read of the draft paper Proving SPARK Verifi-
cation Conditions with SMT solvers, available from the author’s website.

Unless otherwise stated, translation steps are carried out in order they are described in
below.

19

5.1 Standard Form translation

Most translation steps in Victor are carried out on units in a standard form. In this standard
form all functions and relations have a unique type, there is no overloading.

The first translation step is to put units into this standard form.

• Some constants with names of form c base first or c base last are used but not
declared. Victor adds declarations for such constants when they appear to be missing,
when e.g. the constant c first is declared (c not with suffix base) and the constant
c base first is not declared.

• The fdl files output by the Examiner are missing declarations of the E pos and
E val functions used by each enumeration type E, including the implicitly declared
character type. These declarations are added in.

• fdl variables are considered as semantically the same as fdl constants. Each declara-
tion of an fdl variable x, is changed to a constant declaration, and new declarations
are added for names x~ and x%. fdl units use the names x~ and x% to refer to the
value of x at procedure and loop starts respectively.

• Occurrences of the fdl operator sqr(x) are replaced by x ** 2.

• Distinct operators are introduced for the standard arithmetic operations +, ×, −(unary),
−(binary) over the integers and reals, and an explicit coercion operator is introduced
for converting integers to reals.

• Distinct relations are introduced for the inequality relations over integers, reals, and
enumeration types.

• Distinct versions of the fdl operator abs(x) are introduced for the real and integer
types. Defining axioms are added to the set of rules for each unit.

• A defining axiom is added for the fdl predicate odd(x).

• Some characterising axioms are added for the fdl operator bit or(x). No axioms
are added yet for other bit-wise arithmetic operators.

• The fdl language overloads the functions succ and pred and inequality relations such
as < and ≤. Distinct versions are introduced for the fdl integer type and each
enumeration type and declarations are added for each of these versions.

• The Examiner outputs rules with implicitly quantified variables. Victor infers the types
of these variables and makes the quantifications explicit. The explicit quantification is
needed by all the provers to which Victor interfaces.

20

5.2 Type checking

Victor type checks units after translation into standard form and after all translation steps
have been applied.

5.3 Enumerated type abstraction

-abstract-enums

Replace enumerated types with abstract types, introduce all enumeration constants as
normal constants, and keep all enumerated type axioms. These axioms are introduced
by the Examiner to characterise enumerated-type-related functions such as E val and
E pos and can serve as a partial axiomatisation of the introduced abstract types.

-elim-enums

Replace each enumeration type E with an integer subrange type {0 . . . k− 1} where k
is the number of enumeration constants in E. Declare each enumeration constant as
a normal constant, and add an axiom giving its integer value. Delete all existing enu-
merated type axioms and add in new axioms characterising enumerated-type-related
functions such as E val and E pos.

-axiomatise-enums

Replace each enumeration type E with an uninterpreted type, and add axioms charac-
terising the the uninterpreted type as isomorphic to the integer subrange {0 . . . k − 1}
where k is the number of enumeration constants in E. The added axioms replace
the enumerated-type-related axioms introduced by the Examiner and provide a full
axiomatisation of the enumerated types.

5.4 Early array and record abstraction

-abstract-arrays-records-early

Enable abstraction at this point

See Section 5.7 below for rest of options

5.5 Separation of formulas and terms

In fdl formulas are just terms of type Boolean. Many provers require the traditional first-
order logic distinction between formulas and terms. The options here control the introduction
of this distinction.

Victor calls the term-level Booleans bits.

21

-bit-type

Enable separation.

-bit-type-bool-eq-to-iff

Initially convert any equalities at Boolean type to ‘if and only if’s.

-bit-type-with-ite

Whenever possible, introduce instances of the ‘if-then-else’ operator rather than term-
level versions of propositional logic operators and atomic relations.

-bit-type-prefer-bit-vals

A heuristic for controlling whether atomic relations are translated to term-level (bit-
valued) functions or first-order-logic formula-valued relations. With this heuristic,
bit-valued functions are preferred.

-bit-type-prefer-props

Another heuristic for controlling whether atomic relations are translated to term-level
(bit-valued) functions or first-order-logic formula-valued relations. With this heuristic,
formula (propositional) relations are preferred.

If neither this option or -bit-type-prefer-bit-vals is selected, the default behaviour
is to use a bit-valued function just when there is one or more occurrences at the term
level.

-trace-prop-to-bit-insertion

Report in log file when a proposition-to-bit coercion (encoded using the ‘if then else’
operator) is added.

-trace-intro-bit-ops-and-rels

Report in log file when term-level function is introduced for a function (either user-
defined or built-in) that initially had Boolean value type.

NB: the Spark fdl language has ‘bit’ operators bit or, bit and and bit xor. These fdl
operators take integers as arguments and return integers as results. Their result values corre-
spond to the correct unsigned binary result for the respective operations on unsigned binary
versions of the arguments. Axioms on these operators capture the arithmetic properties of
Boolean operations on finite-length binary words. If the Victor option -abstract-bit-ops

is used, Victor introduces operators bit or, bit and and bit xor. These operators
work on the term-level Booleans introduced by Victor and are distinct from the Spark fdl
bit operators.

5.6 Type refinement

-refine-types

Master control

22

-refine-bit-eq-equiv

Add in definition for bit-valued non-trivial equivalence relations. Needed when -bit-type-with-ite

option not previously selected.

-refine-int-subrange-type

-refine-bit-type-as-int-subtype

-refine-bit-type-as-int-quotient

-refine-array-types-with-quotient

-refine-array-types-with-weak-extension-constraint

Constrain values of element and extended indices using possibly non-trivial equivalence
relation on element type. Default is to use equality to constrain these values.

Only applies if option -refine-array-types-with-quotient is not selected.

-refine-uninterpreted-types

Refine every uninterpreted type to be predicate subtype of a new uninterpreted type.
Use this to ensure that exists model in which every uninterpreted type can be inter-
preted by some infinite set.

-no-subtyping-axioms

Suppress generation of axioms for sub-typing properties of functions and constants.

-no-functionality-axioms

Suppress generation of axioms for functionality properties of functions and relations.

-strong-subtyping-axioms

Use subtyping axioms without constraints on values of arguments.

-trace-refine-types-quant-relativisation

Report in log file whenever a quantifier is relativised.

-trace-refine-types-eq-refinement

Report in log file whenever an equality relation is refined to a non-trivial equivalence
relation.

-trace-refine-types-bit-eq-refinement

Report in log file whenever an term-level equality relation is refined to a non-trivial
term-level equivalence relation.

23

5.7 Late array and record abstraction

-abstract-arrays-records-late

Enable abstraction at this point in translation.

-elim-array-constructors

Eliminate all occurrences of array constructors

-elim-record-constructors

Eliminate all occurrences of record constructors

-abstract-record-updates

Introduce axiomatic characterisations for record update operators in terms of record
constructors and record field selectors.

-add-array-select-update-axioms

Assumes that array constructors have first been eliminated.

-add-array-extensionality-axioms

-add-record-select-constructor-axioms

Assumes that record update operators have first been eliminated.

-add-record-constructor-extensionality-axioms

Add extensionality axioms involving record constructors and field select operators.

-add-record-select-update-axioms

Assumes that record constructors have first been eliminated.

-add-record-eq-elements-extensionality-axioms

Add extensionality axioms stating that records are equal just when all fields are equal.

-use-array-eq-aliases

Introduce aliases for equalities at array types in order to help with matching exten-
sionality axioms.

-use-record-eq-aliases

Introduce aliases for equalities at record types in order to help with matching exten-
sionality axioms.

-abstract-array-select-updates

Change primitive array element select and update operators into uninterpreted func-
tions.

-abstract-array-types

Replace array types with uninterpreted types.

-abstract-record-selects-constructors

Change primitive record field selectors and constructors into uninterpreted functions.

24

-abstract-record-selects-updates

Change primitive record field selectors and field update operators into uninterpreted
functions.

-abstract-record-types

Replace record types with uninterpreted types.

5.8 Bit abstraction

-abstract-bit-ops

Replace primitive bit-type operators with uninterpreted functions and add character-
ising axioms

-abstract-bit-valued-eqs

Replace primitive bit-valued equality operators with uninterpreted functions and add
characterising axioms

-abstract-bit-valued-int-le

Replace primitive bit-valued integer inequality operators with uninterpreted functions
and add characterising axioms

-elim-bit-type-and-consts

Replace primitive bit type with either integer type or {0 ..1} subrange type, depending
on whether type has been refined earlier or not. Replace primitive bit-type constants
for true and false with 0 and 1.

5.9 Arithmetic simplification

-elim-consts

Eliminate integer constants. Rewrite all formulae using hypotheses of form x = k or
x = −k where x is an fdl constant or variable, and k is a natural number literal. This
eliminates the apparent syntactic non-linearity of some hypotheses and conclusions. It
is particularly useful for Yices which rejects formulae that appear non-linear.

-ground-eval-exp

Evaluate occurrences of exponent function with natural number arguments.

-ground-eval

Evaluate ground integer arithmetic expressions involving +, − (unary and binary), ×,
integer division, integer modulus, and the exponent function.

-expand-exp-const

Expand natural-number powers of integer and real expressions into products, with
special-case treatment for exponents 0 and 1.

25

-arith-eval

Apply the rewrite rules

k × (k′ × e) = kk′ × e

(k × e)× k′ = kk′ × e

e× k = k × e

(k × e)× (k′ × e′) = kk′ × (e× e′)

e× (k × e′) = k × (e× e′)

(k × e)× e′ = k × (e× e′)

(k × e)÷ k′ = (k ÷ k′)× e if k′ divides k.

The main aim of these rules is to eliminate instances of the ÷ operator.

-sym-consts

Replace each distinct natural number literal greater than threshold t with a new con-
stant and assert axioms concerning how these new constants are ordered: if the new
constants in increasing order are c1 . . . cn, the axioms are t < c1, c1 < c2, . . . , cn−1 < cn.

This option is used to try to reduce the frequency of machine arithmetic overflow with
Simplify. Other users of Simplify try thresholds of 100,000, though we’ve observed
overflows with thresholds as low as 1000.

-sym-prefix=prefix
Set prefix for new symbolic number constants. Default prefix is k .

5.10 Arithmetic abstraction

The different interfaces and provers vary in the classes of arithmetic operations they can
handle. These options allow one to abstract to uninterpreted functions, possibly adding
some characterising axioms, when operations cannot be handled.

-abstract-nonlin-times

Abstract each integer and real multiplication unless at least one of the arguments is a
fixed integer or real constant.

An integer constant is a natural number n or the expression −n.

A real constant is built from an integer constant using the to-real coercion, unary
minus on the reals, and, optionally real division. Real division is allowed just when
the option -abstract-real-div is not chosen.

The Yices API usually rejects individual hypothesis or conclusion formulas if they
have non-linear multiplications. However, it does accept non-linear multiplications in
quantified formulas, and will use linear instantiations of these formulas. Unfortunately,
it currently aborts on finding a non-linear instantiation rather than simply rejecting
the instantiation.

26

The smt-lib sub-logics auflia and auflira both require all multiplications to be
linear.

-abstract-exp

Replace occurrences of integer and real exponent operators by new uninterpreted func-
tions. Currently no defining axioms are supplied, though it would be easy to do so.

This abstraction only happens after possibly evaluating ground and constant exponent
instances.

Only the Cvc3-via-API prover alternative can handle these operators directly.

-abstract-divmod

Replace occurrences of integer division and modulus operators by new uninterpreted
functions.

-abstract-real-div

Abstract occurrences of real division to a new uninterpreted function. No characterising
axioms are currently provided.

Yices-API, Cvc3-API and Z3-smt-lib all allow input with the real division operator,
though it is not known what kinds of occurrences are accepted in each case.

The official smt-lib logics involving reals do not allow real division. The assumption
is that pre-processing has eliminated all occurrences of real division. Victor doesn’t
yet carry out such pre-processing.

-abstract-reals

Abstract occurrences of real arithmetic operations (+, unary −, binary −, ∗, /), integer
to real coercions, and real inequalities to new uninterpreted functions.

Currently this is needed by the smt-lib and Simplify translations. The smt-lib driver
does not attempt to make use of the limited support in some of the smt-lib sub-logics
for reals.

This option is not necessary when Cvc3 and Yices are invoked via their APIs, as both
APIs support real arithmetic.

5.11 Final translation steps

-elim-type-aliases

Normalise all occurrences of type identifiers in type, constant, function and relation
declarations and in all formulas. Normalisation eliminates all occurrences of type ids
T that have a definition T

.
= T ′ where T ′ is either a primitive atomic type (Boolean,

integer, integer subrange, real or bit type) or is itself a type id.

This is needed for the smt-lib and Simplify translations.

-switch-types-to-int

Replace all occurrences of type identifiers in constant, function and relation declara-
tions and in all formulas with the integer type. Checks that every defined type is either

27

an alias for another defined type or an alias for the integer type. This translation step
assumes that a countably infinite model exists for every uninterpreted type.

This option is is needed for the Simplify translation.

-lift-quants

Apply the rewrite rule

P ⇒ ∀x : T. Q ⇔ ∀x : T. P ⇒ Q

(x not free in P) to all formulae. The quantifier instantiation heuristics in both Z3
and Simplify work better when universal quantifiers in hypotheses are all outermost.

-strip-quantifier-patterns

Some of the universally-quantified axioms introduced by translation have trigger pat-
terns giving hints on how instantiations can be guessed. This option strips out these
patterns.

6 CSV utilities

These utilities are very useful for analysing and comparing results of Victor runs.

6.1 Filter CSV records

Usage:

csvfilt [-v] n str [file]

Filter vct records, returning on standard output just those with str a substring of field
n (1-based). If -v provided, then return those records without str a substring of field n.
Records are drawn from file file if it is supplied. If not, they are taken from standard input.

6.2 Merge two CSV files

Usage:

csvmerge file1 m1 . . . mj file2 n1 . . . nk

28

The files file1 and file2 must have the same number of records. This command merges
corresponding records from the two files and outputs them on standard output. The merged
records are composed from fields m1 . . . mj in the records in file1 and fields n1 . . . nk in
the records in file2. If j = 0, all fields of file1 records are used. If k = 0, all fields of file2
records are used.

6.3 Project out fields of CSV records

Usage:

csvproj n1 . . . nk [file]

Build new records from fields n1 . . . nk of the input records and output to standard output.
Input records are drawn from file file if it is supplied. If not, they are taken from standard
input.

Usage:

csvisect file1 file2

Print on standard output those records that occur in both file1 and file2. Comparison of
records currently just uses string equality, so it is sensitive to whitespace between record
fields.

7 Future developments

Anticipated by end of 2010 are

• Support for V2 of the smt-lib standard.

One major benefit of this will be better support for VCs involving mixed real and
integer arithmetic. Currently Victor does translate real arithmetic to V1.2 of the smt-
lib format. However, V1.2 does not support well goals in which integers and reals
are mixed. (For example, it does not define a function injecting the integers into the
reals.)

• Support for outputing VCs for proof using the Isabelle/HOL theorem prover.

The current release includes some preliminary code for this. Improved code has been
developed and is waiting to be merged in.

• A fully-working Windows port.

The current release has some code for this, but it is not yet fully tested.

29

	Supported provers and prover languages
	Simplify language
	SMT-LIB language
	Alt-Ergo
	CVC3
	Simplify
	Yices
	Z3

	Installation and Testing
	Operation
	Terminology
	Basic operation
	Input and output files
	Unit listing input file
	VCT output file
	VSM output file
	VLG output file

	Invocation of Victor
	Examples
	Performance tips

	Command line options
	Input options
	Translation options
	Prover and prover interface selection
	Prover driving options
	Output options
	Screen output options
	General report file options
	VCT file options
	Log file options

	Debugging options
	CVC3 options
	Simplify options
	Yices options
	Z3 options

	Translation
	Standard Form translation
	Type checking
	Enumerated type abstraction
	Early array and record abstraction
	Separation of formulas and terms
	Type refinement
	Late array and record abstraction
	Bit abstraction
	Arithmetic simplification
	Arithmetic abstraction
	Final translation steps

	CSV utilities
	Filter CSV records
	Merge two CSV files
	Project out fields of CSV records

	Future developments

