
!
!
!
!

!
!
!
!
!
YARA User's Manual Ver. 2.0!!!!
Víctor Manuel Álvarez!
vmalvarez@virustotal.com!!!!

mailto:vmalvarez@virustotal.com

YARA User's Manual

YARA in a nutshell! 3!

Writing rules! 3!

2.1 Comments! 5!

Strings! 5!

3.1 Hexadecimal strings! 5!

3.2 Text strings! 7!

3.2.1 Case-insensitive strings! 8!

3.2.2 Wide-character strings! 8!

3.2.3 Searching for full words! 9!

3.3 Regular expressions! 9!

Conditions! 11!

4.1 Counting strings! 12!

4.3 File size! 13!

4.4 Executable entry point! 14!

4.5 Accessing data at a given position! 14!

4.6 Sets of strings! 15!

4.7 Applying the same condition to many strings! 16!

4.8 Using anonymous strings with "of" and "for..of"! 17!

4.9 Iterating over string occurrences! 17!

4.9 Referencing other rules! 18!

More about rules! 19!

5.1 Private rules! 19!

5.3 Rule tags! 20!

5.4 Metadata! 20!

5.5 External variables! 21!

Includes! 22!

Using YARA from command-line! 23!

Using YARA from Python! 24!

YARA User's Manual

!!
1. YARA in a nutshell!!
YARA is a tool aimed at helping malware researchers to identify and classify malware
families. With YARA you can create descriptions of malware families based on textual or
binary information contained on samples of those families. These descriptions, a.k.a rules,
consist patterns and a boolean expression which determines its logic. Rules can be
applied to files or running processes in order to determine if it belongs to the described
malware family.!!
Let's explain it with an example. Suppose that we have a malware family with two variants,
one of them downloads a malicious file from http://foo.com/badfile1.exe, the other
downloads a file from http://bar.com/badfile2.exe, the URLs are hardcoded into the
malware code. Both variants drops the downloaded file with the name win.exe, which also
appears hardcoded into the samples. For this hypothetical family we can create a rule like
this:!!
rule BadBoy!
{!
! strings:!
 $a = "win.exe"!
! $b = "http://foo.com/badfile1.exe"!
! $c = "http://bar.com/badfile2.exe"!
! !
! condition:!
! $a and ($b or $c)!
}!!
The rule above instructs YARA that those files or processes containing the string win.exe
and any of the two URLs must be reported as BadBoy.!!
This is just a simple example, but more complex and powerful rules can be created by
using binary strings with wild-cards, case-insensitive text strings, regular expressions, and
many other features provided by YARA that will be covered in this manual.!
!
2. Writing rules!!
YARA rules are easy to write and understand, and they have a syntax that resembles in
some way a C struct declaration. He here is the simplest rule that you can write for YARA,
which does absolutely nothing:!!
rule Dummy!
{! !
! condition:!
! false!
}!!

YARA User's Manual

Each rule in YARA starts with the keyword rule followed by a rule identifier. Identifiers
must follow the same lexical conventions of the C programming language, they can
contain any alphanumeric character and the underscore character, but the first character
can not be a digit. Rule identifiers are case sensitive and cannot exceed 128 characters.
The following keywords are reserved and cannot be used as an identifier:!!

all!
and!
any!
ascii!
at!
condition!
contains!
entrypoint!
false!
filesize!
fullword!
for!
global!

in!
include!
index!
indexes!
int8!
int16!
int32!
matches!
meta!
nocase!
not!
or!
 of!

private!
rule!
rva!
section!
strings!
them!
true!
uint8!
uint16!
uint32!
wide  

!!
Rules are generally composed of two sections: strings definition and condition, although
the strings definition section can be omitted if the rule doesn't rely on any string. The
condition section is always required. The strings definition section is where the strings that
will be part of the rule are defined. Each string has an identifier consisting in a $ character
followed by a sequence of alphanumeric characters and underscores, these identifiers can
be used in the condition section to refer to the corresponding string. Strings can be defined
in text or hexadecimal form, as shown in the following example:!!
rule ExampleRule!
{!
! strings:!
 $my_text_string = "text here"!
! $my_hex_string = { E2 34 A1 C8 23 FB }!
! !
! condition:!
! $my_text_string or $my_hex_string!
}!!
Text strings are enclosed on double quotes just like in the C language. Hex strings are
enclosed by curly brackets, and they are composed by a sequence of hexadecimal
numbers that can appear contiguously or separated by spaces. Decimal numbers are not
allowed in hex strings.!!
The condition section is where the logic of the rule resides. This section must contain a
Boolean expression telling under which circumstances a file or process satisfies the rule or
not. Generally, the condition will refer to previously defined strings by using the string
identifier. In this context the string identifier acts as a Boolean variable which evaluate to
true of the string was found in the file or process memory, or false otherwise.!!!

YARA User's Manual

!
2.1 Comments!!
You can add comments to your YARA rules just as if it was a C source file, both single-line
and multi-line C-style comments are supported.!!
/* !
! This is a multi-line comment ...!
*/!!
rule CommentExample // ... and this is single-line comment!
{!
! condition:!
! false // just an dummy rule, don't do this!
}!!!
3. Strings!!
There are three types of strings in YARA: hexadecimal strings, text strings and regular
expressions. Hexadecimal strings are used for defining raw sequences of bytes, while text
strings and regular expressions are useful for defining portions of legible text. However
text strings and regular expressions can be also used for representing raw bytes by mean
of escape sequences as will be shown below.!!!
3.1 Hexadecimal strings!!
Hexadecimal strings allow three special constructions that make them more flexible: wild-
cards, jumps, and alternatives. Wild-cards are just placeholders that you can put into the
string indicating that some bytes are unknown and they should match anything. The
placeholder character is the question mark (?). Here you have an example of a
hexadecimal string with wild-cards:!!
rule WildcardExample!
{!
! strings:!
! $hex_string = { E2 34 ?? C8 A? FB }!
! !
! condition:!
! $hex_string!
}!!
As shown in the example the wild-cards are nibble-wise, which means that you can define
just one nibble of the byte and leave the other unknown.!!
Wild-cards are useful when defining strings whose content can vary but you know the
length of the variable chunks, however, this is not always the case. In some circumstances
you may need to define strings with chunks of variable content and length. In those
situations you can use jumps instead of wild-cards.!!

YARA User's Manual

rule JumpExample!
{!
! strings:!
! $hex_string = { F4 23 [4-6] 62 B4 }!
! !
! condition:!
! $hex_string!
}!!
In the example above we have a pair of numbers enclosed in square brackets and
separated by a hyphen, that's a jump. This jump is indicating that any arbitrary sequence
from 4 to 6 bytes can occupy the position of the jump. Any of the following strings will
match the pattern:!!
F4 23 01 02 03 04 62 B4!
F4 23 00 00 00 00 00 62 B4!
F4 23 15 82 A3 04 45 22 62 B4 !!
Any jump [X-Y] must met the condition 0 <= X <= Y. In previous versions of YARA both X
and Y must be lower than 256, but starting with YARA 2.0 there is no limit for X and Y.!!
These are valid jumps:!!
FE 39 45 [0-8] 89 00!
FE 39 45 [23-45] 89 00!
FE 39 45 [1000-2000] 89 00!!
This is invalid:!!
FE 39 45 [10-7] 89 00!!
If the lower and higher bounds are equal you can write a single number enclosed in
brackets, like this:!!
FE 39 45 [6] 89 00!!
The above string is equivalent to both of these:!!
FE 39 45 [6-6] 89 00!
FE 39 45 ?? ?? ?? ?? ?? ?? 89 00!!
Starting with YARA 2.0 you can also use unbounded jumps:!!
FE 39 45 [10-] 89 00!
FE 39 45 [-] 89 00!!
The first one means [10-infinite], the second one means [0-infinite].!!!!!

YARA User's Manual

There are also situations in which you may want to provide different alternatives for a
given fragment of your hex string. In those situations you can use a syntax which
resembles a regular expression:!!!
rule AlternativesExample1!
{!
! strings:!
! $hex_string = { F4 23 (62 B4 | 56) 45 }!
! !
! condition:!
! $hex_string!
}!!
This rule will match any file containing F42362B445 or F4235645.!!
But more than two alternatives can be also expressed. In fact, there are no limits to the
amount of alternative sequences you can provide, and neither to their lengths. !!
rule AlternativesExample2!
{!
! strings:!
! $hex_string = { F4 23 (62 B4 | 56 | 45 ?? 67) 45 }!
! !
! condition:!
! $hex_string!
}!!
As can be seen also in the above example, strings containing wild-cards are allowed as
part of alternative sequences.!!
3.2 Text strings!!
As shown in previous sections, text strings are generally defined like this:!!
rule TextExample!
{!
! strings:!
 $text_string = "foobar"!!
! condition:!
! $text_string!
}!!
This is the simplest case: an ASCII-encoded, case-sensitive string. However, text strings
can be accompanied by some useful modifiers that alter the way in which the string will be
interpreted. Those modifiers are appended at the end of the string definition separated by
spaces, as will be discussed below. !!

YARA User's Manual

Text strings can also contain the following subset of the escape sequences available in the
C language:!!

!!
3.2.1 Case-insensitive strings!!
Text strings in YARA are case-sensitive by default, however you can turn your string into
case-insensitive mode by appending the modifier nocase at the end of the string
definition, in the same line.!!
rule CaseInsensitveTextExample!
{!
! strings:!
 $text_string = "foobar" nocase!!
! condition:!
! $text_string!
}!!
With the nocase modifier the string "foobar" will match "Foobar", "FOOBAR", and
"fOoBaR". !!
This modifier can be used in conjunction with any other modifier.!!!
3.2.2 Wide-character strings!!
The wide modifier can be used to search for strings encoded with two bytes per character,
something typical in many executable binaries.!!!

� !!
In the above figure de string "Borland" appears encoded as two bytes per character,
therefore the following rule will match:!!!

\" Double quote

\\ Backslash

\t Horizontal tab

\xdd Any byte in hexadecimal notation

YARA User's Manual

rule WideCharTextExample!
{!
! strings:!
 $wide_string = "Borland" wide!!
! condition:!
! $wide_string!
}!!
However, keep in mind that this modifier just interleaves the ASCII codes of the characters
in the string with zeroes, it does not support truly UTF-16 strings containing non-English
characters. If you want to search for strings in both ASCII and wide form, you can use the
ascii modifier in conjunction with wide, no matter the order in which they appear. !!
rule WideCharTextExample!
{!
! strings:!
 $wide_and_ascii_string = "Borland" wide ascii!!
! condition:!
! $wide_and_ascii_string!
}!!
The ascii modifier can appear along, without an accompanying wide modifier, but it's
not necessary to write it because in absence of wide the string is assumed to be ASCII by
default.!!!
3.2.3 Searching for full words!!
Another modifier that can be applied to text strings is fullword. This modifier guarantee
that the string will match only if it appears in the file delimited by non-alphanumeric
characters. For example the string "domain", if defined as fullword, don't matches
"www.mydomain.com" but it matches "www.my-domain.com" and "www.domain.com". !!!
3.3 Regular expressions!!
Regular expressions are one of the most powerful features of YARA. They are defined in
the same way as text strings, but enclosed in backslashes instead of double-quotes, like in
the Perl programming language. !!
rule RegExpExample1!
{!
! strings:!
 $re1 = /md5: [0-9a-zA-Z]{32}/ !
! $re2 = /state: (on|off)/!!
! condition:!
! $re1 and $re2!
}!

YARA User's Manual

Regular expressions can be also followed by nocase, ascii, wide, and fullword
modifiers just like in text strings. The semantics of these modifiers are the same in both
cases. !!
In previous versions of YARA externals libraries like PCRE and RE2 were used to perform
regular expression matching, but starting with version 2.0 YARA uses its own regular
expression engine. This new engine implements most features found in PCRE, except a
few of them like capture groups, POSIX character classes and backreferences.!!
YARA’s regular expressions recognize the following metacharacters:!!

!!
The following quantifiers are recognized as well:!!

!!
All these quantifiers have a non-greedy variant, followed by a question mark (?):!!

\ Quote the next metacharacter

^ Match the beginning of the file

$ Match the end of the file

| Alternation

() Grouping

[] Bracketed character class

* Match 0 or more times

+ Match 1 or more times

? Match 0 or 1 times

{n} Match exactly n times

{n,} Match at least n times

{,m} Match 0 to m times

{n,m} Match n to m times

*? Match 0 or more times, non-greedy

+? Match 1 or more times, non-greedy

?? Match 0 or 1 times, non-greedy

{n}? Match exactly n times, non-greedy

YARA User's Manual

!!
The following escape sequences are recognized:!!

!!
These are the recognized character classes:!!

!!!
4. Conditions!!
Conditions are nothing more than Boolean expressions as those that can be found in all
programming languages, for example in an "if" statement. They can contain the typical
Boolean operators and, or and not and relational operators >=, <=, <, >, == and !=.
Also, the arithmetic operators (+,-,*,\, %) and bitwise operators (&, |, <<, >>, ~, ^) can
be used on numerical expressions.!

String identifiers can be also used within a condition, acting as Boolean variables whose
value depends on the presence or not of the associated string in the file. !!

{n,}? Match at least n times, non-greedy

{,m}? Match 0 to m times, non-greedy

{n,m}? Match n to m times, non-greedy

\t Tab (HT, TAB)

\n New line (LF, NL)

\r Return (CR)

\f Form feed (FF)

\a Alarm bell (BEL)

\x00 Character whose ordinal number is the given
hexadecimal number

\w Match a “word” character (aphanumeric plus “_”)

\W Match a non-“word” character

\s Match a whitespace character

\S Match a non-whitespace character

\d Match a decimal digit character

\D Match a non-digit character

YARA User's Manual

rule Example!
{!
! strings:!
 $a = "text1"!
! $b = "text2"!
! $c = "text3"!
! $d = "text4"!!
! condition:!
! ($a or $b) and ($c or $d)!
}!!!
4.1 Counting strings!!
Sometimes we need to know not only if a certain string is present or not, but how many
times the string appears in the file or process memory. The number of occurrences of each
string is represented by a variable whose name is the string identifier but with a #
character in place of the $ character. For example:!!
rule CountExample!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!!
! condition:!
! #a == 6 and #b > 10!
}!!
This rules match any file or process containing the string $a exactly six times, and more
than ten occurrences of string $b.!!!
4.2 String offsets or virtual addresses!!
In the majority of cases, when a string identifier is used in a condition, we are willing to
know if the associated string is anywhere within the file or process memory, but sometimes
we need to know if the string is at some specific offset on the file or at some virtual
address within the process address space. In such situations the operator at is what we
need. This operator is used as shown in the following example:!!
rule AtExample!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!!
! condition:!
! $a at 100 and $b at 200!
}!

YARA User's Manual

!
The expression $a at 100 in the above example is true only if string $a is found at offset
100 within the file (or at virtual address 100 if applied to a running process). The string $b
should appear at offset 200. Please note that both offsets are decimal, however
hexadecimal numbers can be written by adding the prefix 0x before the number as in the C
language, which comes very handy when writing virtual addresses. Also note the higher
precedence of the operator at over the and.!!
While the at operator allows to search for a string at some fixed offset in the file or virtual
address in a process memory space, the in operator allows to search for the string within
a range of offsets or addresses. !!!
rule InExample!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!!
! condition:!
! $a in (0..100) and $b in (100..filesize)!
}!!
In the example above the string $a must be found at an offset between 0 and 100, while
string $b must be at an offset between 100 and the end of the file. Again, numbers are
decimal by default.!!
You can also get the offset or virtual address of the i-th occurrence of string $a by using
@a[i]. The indexes are one-based, so the first occurrence would be @a[1] the second
one @a[2] and so on. If you provide an index greater then the number of occurrences of
the string, the result will be a NaN (Not A Number) value. !!!
4.3 File size!!
String identifiers are not the only variables that can appear in a condition (in fact, rules can
be defined without any string definition as will be shown below), there are other special
variables that can be used as well. One of these especial variables is filesize, which
holds, as its name indicates, the size of the file being analyzed. The size is expressed in
bytes.!!
rule FileSizeExample!
{!
! condition:!
! filesize > 200KB!
}!!
The previous example also demonstrate the use of the KB postfix. This postfix, when
attached to a numerical constant, automatically multiplies the value of the constant by
1024. The MB postfix can be used to multiply the value by 220. Both postfixes can be used
only with decimal constants.!

YARA User's Manual

!
The use of filesize only makes sense when the rule is applied to a file, if the rule is
applied to a running proccess won’t never match because filesize doesn’t make sense
in this context.!!!
4.4 Executable entry point!!
Another special variable than can be used on a rule is entrypoint. If file is a Portable
Executable (PE) or Executable and Linkable Format (ELF), this variable holds the raw
offset of the exectutable’s entry point in case we scanning a file. If we are scanning a
running process entrypoint will hold the virtual address of the main executable’s entry
point. A typical use of this variable is to look for some pattern at the entry point to detect
packers or simple file infectors.!!
rule EntryPointExample1!
{!
! strings:!
 $a = { E8 00 00 00 00 }!!
! condition:!
! $a at entrypoint !
} !!
rule EntryPointExample2!
{!
! strings:!
 $a = { 9C 50 66 A1 ?? ?? ?? 00 66 A9 ?? ?? 58 0F 85 }!!
! condition:!
! $a in (entrypoint..entrypoint + 10)!
}!!
The presence of the entrypoint variable in a rule implies that only PE or ELF files can
satisfy that rule. If the file is not a PE or ELF any rule using this variable evaluates to false.!!!
4.5 Accessing data at a given position!!
There are many situations in which you may want to write conditions that depends on data
stored at a certain file offset or memory virtual address, depending if we are scanning a file
or a running proces. In those situations you can use one of the following functions to read
from the file at the given offset:!!
int8(<offset or virtual address>)!
int16(<offset or virtual address>)!
int32(<offset or virtual address>)!
uint8(<offset or virtual address>)!
uint16(<offset or virtual address>)!
uint32(<offset or virtual address>)!

YARA User's Manual

The intXX functions read 8, 16, and 32 bits signed integers from <offset or virtual
address>, while functions uintXX read unsigned integers. Both 16 and 32 bits integer
are considered to be little-endian. The <offset or virtual address> parameter can
be any expression returning an unsigned integer, including the return value of one the
uintXX functions itself. As an example let's see a rule to distinguish PE files:!!
rule IsPE!
{!
! condition:!
 ! // MZ signature at offset 0 and ...!
! uint16(0) == 0x5A4D and!
! // ... PE signature at offset stored in MZ header at 0x3C!
! uint32(uint32(0x3C)) == 0x00004550!
}!!!
4.6 Sets of strings!!
There are circumstances in which is necessary to express that the file should contain a
certain number strings from a given set. None of the strings in the set are required to be
present, but at least some of them should be. In these situations the operator of come into
help.!!
rule OfExample1!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!
! $c = "dummy3"!!
! condition:!
! 2 of ($a,$b,$c)!
}!!
What this rule says is that at least two of the strings in the set ($a,$b,$c) must be
present on the file, no matter which. Of course, when using this operator, the number
before the of keyword must be equal to or less than the number of strings in the set.!!
The elements of the set can be explicitly enumerated like in the previous example, or can
be specified by using wild cards. For example:!!
rule OfExample2!
{!
! strings:!
 $foo1 = "foo1"!
! $foo2 = "foo2"!
! $foo3 = "foo3"!!
! condition:!
! 2 of ($foo*) /* equivalent to 2 of ($foo1,$foo2,$foo3) */!
}!

YARA User's Manual

!
rule OfExample3!
{!
! strings:!
 $foo1 = "foo1"!
! $foo2 = "foo2"!!
! $bar1 = "bar1"!
! $bar2 = "bar2"!!
! condition:!
! 3 of ($foo*,$bar1,$bar2)!
}!!
You can even use ($*) to refer to all the strings in your rule, or write the equivalent
keyword them for more legibility. !!
rule OfExample4!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!
! $c = "dummy3"!!
! condition:!
! 1 of them /* equivalent to 1 of ($*) */!
}!!
In all the above examples the number of strings have been specified by a numeric
constant, but any expression returning a numeric value can be used. The keywords any
and all can be used as well. !!
all of them /* all strings in the rule */!
any of them /* any string in the rule */!
all of ($a*) /* all strings whose identifier starts by $a */!
any of ($a,$b,$c) /* any of $a, $b or $c */!
1 of ($*) /* same that "any of them" */!!!
4.7 Applying the same condition to many strings!!
There is another operator very similar to of but even more powerful, the for..of
operator. The syntax is:!!
for expression of string_set : (boolean_expression)!!
And its meaning is: from those strings in string_set at least expression of them must
satisfy boolean_expression.!!
In other words: boolean_expression is evaluated for every string in string_set and
must be at least expression of them returning True.!

YARA User's Manual

!
Of course, boolean_expression can be any boolean expression accepted in the
condition section of a rule, except for one important detail: here you can (and should) use
a dollar sign ($) as a place-holder for the string being evaluated. Take a look to the
following expression:!!
for any of ($a,$b,$c) : ($ at entrypoint)!!
The $ symbol in the boolean expression is not tied to any particular string, it will be $a,
and then $b, and then $c in the three successive evaluations of the expression.!!
Maybe you already realized that the of operator is an special case of for..of. The
following expressions are the same:!!
any of ($a,$b,$c)!
for any of ($a,$b,$c) : ($)!!
You can also employ the symbols # and @ to make reference to the number of occurrences
and the first offset of each string respectively.!!
for all of them : (# > 3)!
for all of ($a*) : (@ > @b)!!!
4.8 Using anonymous strings with "of" and "for..of"!!
When using the of and for..of operators followed by them, the identifier assigned to
each string of the rule is usually superfluous. As we are not referencing any string
individually we don't not need to provide a unique identifier for each of them. In those
situations you can declare anonymous strings with identifiers consisting only in the $
character, as in the following example:!!
rule AnonymousStrings !
{!
! strings:!
 $ = "dummy1"!
! $ = "dummy2"!!
! condition:!
! 1 of them !
}!!!
4.9 Iterating over string occurrences!!
As seen in section 4.2, the offsets or virtual addresses where a given string appears within
a file or process address space can be accesed by using the syntax: @a[i], where i is an
index indicating which occurrence of the string $a are you refering to. (@a[1], @a[2],...).!!
Sometimes you will need to iterate over some of these offsets and guarantee they satisfy a
given condition. For example:!

YARA User's Manual

rule Ocurrences!
{!
! strings:!
 $a = "dummy1"!
! $b = "dummy2"!!
! condition:!
! for all i in (1,2,3) : (@a[i] + 10 == @b[i])!
}!!
The previous rule tells that the first three ocurrences of $b should be 10 bytes away from
the first three ocurrences of $a. !!
The same condition could be written also as:!!
for all i in (1..3) : (@a[i] + 10 == @b[i])!!
Notice that we’re using a range (1..3) instead of enumerating the index values (1,2,3). Of
course, we’re not forced to use constants to specify range boundaries, we can use
expressions as well like in the following example:!!
for all i in (1..#a) : (@a[i] < 100)!!
In this case we’re iterating over every ocurrence of $a (remember that #a represents the
number of occurrences of $a). This rule is telling that every occurrence of $a should be
within the first 100 bytes of the file.!!
In case you want to express that only some occurrences of the string should satisfy your
condition, the same logic seen in the for..of operator applies here. !!
for any i in (1..#a): (@a[i] < 100)!
for 2 i in (1..#a): (@a[i] < 100)!
 !
Resuming, the syntax of this operator is:!!
for expression identifier in indexes : (boolean_expression)!!
4.9 Referencing other rules!!
When writing the condition for a rule you can also make reference to a previously defined
rule in a manner that resembles a function invocation of traditional programming
languages. In this way you can create rules that depends on others. Let's see an example:!!
rule Rule1!
{!
! strings:!
 $a = "dummy1"!!
! condition:!
! $a!
}!

YARA User's Manual

!
rule Rule2!
{!
! strings:!
 $a = "dummy2"!!
! condition:!
! $a and Rule1!
}!!
As can be seen in the example, a file will satisfy Rule2 only if it contains the string
"dummy2" and satisfy Rule1. Note that is strictly necessary to define the rule being
invoked before the one that will make the invocation.!!!
5. More about rules!!
There are some aspects of YARA rules that has not been covered yet, but still are very
important. They are: global rules, private rules, tags and metadata.!!!
5.1 Global rules!!
Global rules give you the possibility of imposing restrictions in all your rules at once. For
example, suppose that you want all your rules ignoring those files that exceed certain size
limit, you could go rule by rule doing the required modifications to their conditions, or just
write a global rule like this one:!!
global rule SizeLimit!
{!
! condition:!
! filesize < 2MB !
}!!
You can define as many global rules as you want, they will be evaluated before the rest of
the rules, which in turn will be evaluated only of all global rules are satisfied. !!!
5.1 Private rules!!
Private rules are a very simple concept. That are just rules that are not reported by YARA
when they match on a given file. Rules that are not reported at all may seem sterile at first
glance, but when mixed with the possibility offered by YARA of referencing one rule from
another (see section 4.5) they become useful. Private rules can serve as building blocks
for other rules, and at the same time prevent cluttering YARA's output with irrelevant
information. For declaring a rule as private just add the keyword private before the rule
declaration.!!!!!

YARA User's Manual

!
private rule PrivateRuleExample!
{!
! ...!
}!!
You can apply both private and global modifiers to a rule, resulting a global rule that
does not get reported by YARA but must be satisfied.!!!
5.3 Rule tags!!
Another useful feature of YARA is the possibility of adding tags to rules. Those tags can be
used later to filter YARA's output and show only the rules that you are interesting in. You
can add as many tags as you want to a rule, they are declared after the rule identifier as
shown below:!!
rule TagsExample1 : Foo Bar Baz!
{!
! ...!
}!!
rule TagsExample2 : Bar!
{!
! ...!
}!!!
Tags must follow the same lexical convention of rule identifiers, therefore only
alphanumeric characters and underscores are allowed, and the tag cannot start with a
digit. They are also case sensitive. !!
When using YARA you can output only those rules that are tagged with the tag or tags that
you provide.!!!
5.4 Metadata!!
Besides the string definition and condition sections, rules can also have a metadata
section where you can put additional information about your rule. The metadata section is
defined with the keyword meta and contains identifier/value pairs like in the following
example:!!!!!!!!!!

YARA User's Manual

rule MetadataExample!
{!
! meta:!
! my_identifier_1 = "Some string data"!
! my_identifier_2 = 24!
! my_identifier_3 = true!!
! strings:!
 $my_text_string = "text here"!
! $my_hex_string = { E2 34 A1 C8 23 FB }!
! !
! condition:!
! $my_text_string or $my_hex_string!
}!!
As can be seen in the example, metadata identifiers are always followed by an equal sign
and the value assigned to them. The assigned values can be strings, integers, or one of
the boolean values true or false. Note that identifier/value pairs defined in the metadata
section can not be used in the condition section, their only purpose is to store additional
information about the rule.!!!
5.5 External variables!!
External variables allow you to define rules which depends on values provided from the
outside. For example you can write the following rule:!!
rule ExternalVariableExample1!
{! !
! condition:!
! ext_var == 10!
}!!
In this case ext_var is an external variable whose value is assigned at run-time (see -d
option of command-line tool, and externals parameter of compile and match methods in
yara-python). External variables could be of types: integer, string or boolean; their type
depends on the value assigned to them. An integer variable can substitute any integer
constant in the condition and boolean variables can occupy the place of boolean
expressions. For example:!!
rule ExternalVariableExample2!
{! !
! condition:!
! bool_ext_var or filesize < int_ext_var!
}!!
External variables of type strings can be used with operators contains and matches.
The contains operator returns true if the string contains the specified substring. The
operator matches returns true if the string matches the given regular expression.!!!

YARA User's Manual

rule ExternalVariableExample3!
{! !
! condition:!
! string_ext_var contains "text"!
}!!
rule ExternalVariableExample4!
{! !
! condition:!
! string_ext_var matches /[a-z]+/!
}!!
Keep in mind that every external variable used in your rules must be defined at run-time,
either by using the -d option of the command-line tool, or by providing the externals
parameter to the appropriate method in yara-python.!!
6. Includes!!
In order to allow you a more flexible organization of your rules files, YARA provides the
include directive. This directive works in a similar way to the #include pre-procesor
directive in your C programs, which inserts the content of the specified source file into the
current file during compilation. The following example will include the content of “other.yar”
into the current file.!!
include "other.yar"!!
The base path when searching for a file in an include directive will be the directory
where the current file resides. For that reason, the file “other.yar” in the previous example
should be located in the same directory of the current file. However you can also specify
relative paths like these ones:!!
include "./includes/other.yar"!
include "../includes/other.yar"!!
And you can also use absolute paths:!!
include "/home/plusvic/yara/includes/other.yar"!!
In Windows don’t forget to write the drive letter, and both slashes and backslashes are
accepted:!!
include "c:/yara/includes/other.yar"!
include “c:\\yara\\includes\\other.yar"!!!

YARA User's Manual

7. Using YARA from command-line!
!
In order to invoke YARA you’ll need two things: a file with the rules you want to use (either
in source code or compiled form) and the target to be scanned. The target can be a file, a
folder, or a process. !!
usage: yara [OPTION]... RULES_FILE FILE | PID!
options:!
 -t <tag> print rules tagged as <tag> and ignore the rest. !
 -i <identifier> print rules named <identifier> and ignore the rest.!
 -n print only not satisfied rules (negate).!
 -g print tags.!
 -m print metadata.!
 -s print matching strings.!
 -p <number> use the specified <number> of threads to scan a directory.!
 -l <number> abort scanning after matching a number of rules.!
 -a <seconds> abort scanning after a number of seconds has elapsed.!
 -d <identifier>=<value> define external variable.!
 -r recursively search directories.!
 -f fast matching mode.!
 -w disable warnings.!
 -v show version information.!!
Rule files can be passed directly in source code form, or can be previously compiled with
the yarac tool. You may prefer to use your rules in compiled form if you are going to invoke
YARA multiple times with the same rules. This way you’ll save time, because for YARA is
faster to load compiled rules than compiling the same rules over and over again.!!
The rules will be applied to the target specified as the last argument to YARA, if it’s a path
to a directory all the files contained in it will be scanned. By default YARA does not attempt
to scan directories recursively, but you can use the -r option to do it.!!
The -t option allows you to specify one or more tags that will act as filters to YARA's
output. If you use this option, only those rules tagged as you specified will be shown. The
-i option has a similar behavior, filtering all rules except the one having the given
identifier. You can also use the -n modifier to print those rules that are not satisfied by the
files.!!
The -l argument allows to stop applying rules after a given number of them has already
matched. The -a argument stops the scanning after the given amount of seconds has
elapsed.!!
The -d is used to define external variables. For example: !!
-d flag=true !
-d beast=666 !
-d name=”James Bond”!!!!!!

YARA User's Manual

8. Using YARA from Python!!
YARA can be also invoked from your own Python scripts. The yara-python extension is
provided in order to make YARA functionality available to Python users. Once yara-python
is built and installed on your system you can use it as shown below:!!
import yara!!
Then you will need to compile your YARA rules before applying them to your data, the
rules can be compiled from a file path:!!
rules = yara.compile(filepath='/foo/bar/myrules')!!
The default argument is filepath, so you don't need to explicitly specify its name:!!
rules = yara.compile('/foo/bar/myrules')!!
You can also compile your rules from a file object:!!
fh = open('/foo/bar/myrules')!
rules = yara.compile(file=fh)!
fh.close()!!
Or you can compile them directly from a Python string:!!
rules = yara.compile(source='rule dummy { condition: true }')!!
If you want to compile a group of files or strings at the same time you can do it by using
the filepaths or sources named arguments:!!
rules = yara.compile(filepaths={!!
! 'namespace1':'/my/path/rules1',!
! 'namespace2':'/my/path/rules2'!
})!!
rules = yara.compile(sources={!!
! 'namespace1':'rule dummy { condition: true }',!
! 'namespace2':'rule dummy { condition: false }'!
})!!
Notice that both filepaths and sources must be dictionaries with keys of string type. The
dictionary keys are used as a namespace identifier, allowing to differentiate between rules
with the same name in different sources, as occurs in the second example with the
“dummy” name.!!
The compile method also have an optional boolean parameter named includes which
allows you to control whether or not the include directive should be accepted in the source
files, for example:!!

YARA User's Manual

rules = yara.compile('/foo/bar/my_rules', includes=False)!!
If the source file contains include directives the previous line would raise an exception.!!
If you are using external variables in your rules you must define those externals variables
either while compiling the rules, or while applying the rules to some file. To define your
variables at the moment of compilation you should pass the externals parameter to the
compile method. For example:!!
rules = yara.compile('/foo/bar/my_rules’, !
 externals= {'var1': 'some string’, 'var2': 4, 'var3': True})!!
The externals parameter must be a dictionary with the names of the variables as keys and
an associated value of either string, integer or boolean type.!!
In all cases compile returns an instance of the class Rules. This class have a save
method that can be used to save the compiled rules to a file:!!
rules.save('/foo/bar/my_compiled_rules')!!
The compiled rules can be loaded later by using YARA’s load method:!!
rules = yara.load('/foo/bar/my_compiled_rules')!!
The result of load is also an instance of the class Rules.!!
Instances of Rules also have a match method, which allows to apply the rules to a file:!!
matches = rules.match('/foo/bar/my_file')!!
But you can also apply the rules to a Python string:!!
f = fopen('/foo/bar/my_file', 'rb')!!
matches = rules.match(data=f.read())!!
Or to a running process:!!
matches = rules.match(pid=1234)!!
As in the case of compile, the match method can receive definitions for externals
variables in the externals parameter.!!
matches = rules.match('/foo/bar/my_file', !
! externals= {'var1': 'some other string’, 'var2': 100})!!
Externals variables defined during compile-time don’t need to be defined again in
subsequent invocations of match method. However you can redefine any variable as
needed, or provide additional definitions that weren’t provided during compilation.!!!

YARA User's Manual

In some situations involving a very large set of rules or huge files the match method can
take too much time to run. In those situations you may find useful the timeout argument:!!
matches = rules.match('/foo/bar/my_huge_file', timeout=60)!!
If the match function hasn’t completed before the specified number of seconds elapsed, a
TimeoutError exception will be raised.!!
You can also specify a callback function when invoking match method. The provided
function will be called for every rule, no matter if matching or not. Your callback function
should expect a single parameter of dictionary type, and should return
CALLBACK_CONTINUE to proceed to the next rule or CALLBACK_ABORT to stop
applying rules to your data.!!
Here is an example:!!
import yara!!
def mycallback(data):!
! print data!
! yara.CALLBACK_CONTINUE!!
matches = rules.match('/foo/bar/my_file', callback=mycallback)!!
The passed dictionary will be something like this:!!
{!
! 'tags': ['foo', 'bar'], !
! 'matches': True, !
! 'namespace': 'default', !
! 'rule': 'my_rule', !
! 'meta': {}, !
! 'strings': [(81L, '$a', 'abc'), (141L, '$b', 'def')]!
}!!
The matches field indicates if the rules matches the data or not.!!
The strings fields is a list of matching strings, with vectors of the form:!!
(<offset>, <string identifier>, <string data>)!!
The match method returns a list of instances of the class Match. The instances of this
class can be treated as text strings containing the name of the matching rule. For example
you can print them:!!
for m in matches:!
! print "%s" % m!!
In some circumstances you may need to explicitly convert the instance of Match to string,
for example when comparing it with another string:!!

YARA User's Manual

if str(matches[0]) == 'SomeRuleName':!
! ...!!!
The Match class has the same attributes as the dictionary passed to the callback function:!!
• rule!
• namespace!
• meta!
• tags!
• strings

